Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

FAN Chen-zi, LIU Yong-bing, ZHAO Wen-bo, LIU Cheng-hai, YUAN Ji-hai, GUO Wei, HAO Nai-xuan. Pollution Distribution Characteristics and Ecological Risk Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons in the River Sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035
Citation: FAN Chen-zi, LIU Yong-bing, ZHAO Wen-bo, LIU Cheng-hai, YUAN Ji-hai, GUO Wei, HAO Nai-xuan. Pollution Distribution Characteristics and Ecological Risk Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons in the River Sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035

Pollution Distribution Characteristics and Ecological Risk Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons in the River Sediments in Anning, Yunnan Province

  • BACKGROUND

    Anning is an important industrial and mining city in the upper reaches of the Yangtze River Economic Belt. It is a fulcrum for economic development and ecological civilization construction in the Central Yunnan New Area. The investigation of geochemical water system sediments and hydrogeology in the Anning area was last performed in the 1970s and the 1980s. In recent years, the impact of human production and life on the ecological environment remains unclear.

    OBJECTIVES

    Surface sediment samples from the Anning area were investigated to reveal their pollution status, spatial distribution characteristics, and potential ecological risks of river sediments.

    METHODS

    X-ray fluorescence spectroscopy, inductively coupled plasma optical mass spectrometry, gas chromatography-mass spectrometry, and other methods were used to systematically analyze the contents and distribution characteristics of major elements, trace elements, and 16 priority-controlled PAHs. Geoaccumulation index, Hankanson ecological risk index, and sediment quality criteria were used to assess the ecological risk of eight typical heavy metals (As, Cd, Cr, Cu, Ni, Zn, Pb, and Hg) and PAHs.

    RESULTS

    Results showed that the heavy metal content in the river sediments from the Anning area was higher than the background values of the national and southern rivers. The spatial distributions of the heavy metals were highly variable and uneven. Additionally, Cd, Hg, and Ad showed medium to severe potential ecological risks. The average content of ∑PAHs was 20856ng/g, and the detection rate of the 16 monomers was ~100%. The overall ecological risk of PAHs was low, and their main sources were petrochemical industry and combustion of petroleum fuels. The major risks of pollutants in the river sediments of the Anning area were mainly concentrated in the vicinity of steel plants and chemical factories in the Tanglangchuan River.

    CONCLUSIONS

    This research provides a scientific basis for local governments to strengthen key industrial point source pollution control, and reduce and control industrial sewage discharge.

  • 加载中
  • [1] Forstner U. Metal pollution in the aquatic environment[M]. Berlin: Spring Verleg, 1978.

    Google Scholar

    [2] 李佳宣, 施泽明, 郑林, 等. 沱江流域水系沉积物重金属的潜在生态风险评价[J]. 地球与环境, 2010, 38(4): 481-487.

    Google Scholar

    Li J X, Shi Z M, Zheng L, et al. Evaluation on potential ecological risk of heavy metals pollution in sediments from Tuojiang Drainage[J]. Earth and Environment, 2010, 38(4): 481-487.

    Google Scholar

    [3] 肖冬冬, 史正涛, 苏斌, 等. 滇池宝象河表层沉积物重金属含量空间分布特征及污染评价[J]. 环境化学, 2017, 36(12): 2719-2728. doi: 10.7524/j.issn.0254-6108.2017041102

    CrossRef Google Scholar

    Xiao D D, Shi Z T, Su B, et al. Spatial distribution and pollution assessment of heavy metals in surface sediment of Baoxiang River, Dianchi Lake[J]. Environmental Chemistry, 2017, 36(12): 2719-2728. doi: 10.7524/j.issn.0254-6108.2017041102

    CrossRef Google Scholar

    [4] Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: Remobilization and demobilization[J]. Science of The Total Environment, 2001, 266: 195-202. doi: 10.1016/S0048-9697(00)00740-3

    CrossRef Google Scholar

    [5] Liu Y, Huang H, Sun T, et al. Comprehensive risk assessment and source apportionment of heavy metal contamination in the surface sediment of the Yangtze River Anqing Section, China[J]. Environmental Earth Sciences, 2018, 77: 493. doi: 10.1007/s12665-018-7621-1

    CrossRef Google Scholar

    [6] Enuneku A, Omoruyi O, Tongo I, et al. Evaluating the potential health risks of heavy metal pollution in sediment and selected benthic fauna of Benin River, southern Nigeria[J]. Applied Water Science, 2018, 8(8): 1-13. doi: 10.1007/s13201-018-0873-9

    CrossRef Google Scholar

    [7] 张杰, 郭西亚, 曾野, 等. 太湖流域河流沉积物重金属分布及污染评估[J]. 环境科学, 2019, 40(5): 2202-2210. doi: 10.3969/j.issn.1000-6923.2019.05.049

    CrossRef Google Scholar

    Zhang J, Guo X Y, Zeng Y, et al. Spatial distribution and pollution assessment of heavy metals in river sediments from Lake Taihu Basin[J]. Environmental Science, 2019, 40(5): 2202-2210. doi: 10.3969/j.issn.1000-6923.2019.05.049

    CrossRef Google Scholar

    [8] Abuduwaili J, Zhang Z Y, Jiang F Q. Assessment of the distribution, sources and potential ecological risk of heavy metals in the dry surface sediment of Aibi Lake in northwest China[J]. PLOS One, 2015, 10(3): 1-16.

    Google Scholar

    [9] 田建民, 徐争启, 张富贵, 等. 四川雷波磷矿区沉积物重金属污染特征研究[J]. 环境科学与技术, 2020, 43(11): 59-68.

    Google Scholar

    Tian J M, Xu Z Q, Zhang F G, et al. Pollution characteristics of heavy metals in sediments of Leibo phosphate mine area, Sichuan Province[J]. Environmental Science & Technology, 2020, 43(11): 59-68.

    Google Scholar

    [10] Hong W J, Jia H L, Li Y F, et al. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, northeast China[J]. Ecotoxicology and Environmental Safety, 2016, 128: 11-20. doi: 10.1016/j.ecoenv.2016.02.003

    CrossRef Google Scholar

    [11] Ke X, Gui S F, Huang H, et al. Ecological risk assess-ment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175: 473-481. doi: 10.1016/j.chemosphere.2017.02.029

    CrossRef Google Scholar

    [12] 马晗宇, 申月芳, 应耀明, 等. 独流减河湿地沉积物中多环芳烃生态风险评价[J]. 环境化学, 2020, 39(8): 2253-2262.

    Google Scholar

    Ma H Y, Shen Y F, Ying Y M, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments of Duliujian River Wetland[J]. Environmental Chemistry, 2020, 39(8): 2253-2262.

    Google Scholar

    [13] 尚文郁, 谢曼曼, 王淑贤, 等. 应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价[J]. 岩矿测试, 2020, 39(4): 597-608.

    Google Scholar

    Shang W Y, Xie M M, Wang S X, et al. Detection of heavy metals mobile fraction in Lagoonal wetland sediment using near-infrared spectroscopy and ecological risk assessment[J]. Rock and Mineral Analysis, 2020, 39(4): 597-608.

    Google Scholar

    [14] Ayari J, Barbieri M, Agan Y, et al. Trace element contam-ination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia: A river basin scale assessment[J]. Environmental Geochemistry and Health, 2021, doi: 10.1007/S10653-021-00887-1.

    CrossRef Google Scholar

    [15] Yuan Z, He N, Wu X, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk[J]. Ecotoxicology and Environmental Safety, 2021, 214: 112095. doi: 10.1016/j.ecoenv.2021.112095

    CrossRef Google Scholar

    [16] 张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738.

    Google Scholar

    Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evalution in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738.

    Google Scholar

    [17] 沈小明, 吕爱娟, 沈加林, 等. 长江口启东-崇明岛航道沉积物中多环芳烃分布来源及生态风险评价[J]. 岩矿测试, 2014, 33(3): 379-385.

    Google Scholar

    Shen X M, Lv A J, Shen J L, et al. Distribution characteristics, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in waterway sediments from Qidong and Chongming Island of Yangtze River Estuary[J]. Rock and Mineral Analysis, 2014, 33(3): 379-385.

    Google Scholar

    [18] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.

    Google Scholar

    [19] Zhao H, Zhao J, Yin C, et al. Index models to evaluate the potential metal pollution contribution from washoff of road-deposited sediment[J]. Water Research, 2014, 50: 71-79. doi: 10.1002/2013WR013939

    CrossRef Google Scholar

    [20] Hankanson L. An ecological risk index for aquatic pollution control-A sediment ecological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

    CrossRef Google Scholar

    [21] Ingersoll C G, Macdonald D, Wang N, et al. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines[J]. Achieves of Environmental Contamination and Toxicology, 2001, 41: 8-21. doi: 10.1007/s002440010216

    CrossRef Google Scholar

    [22] Field L J, MacDonald D D, Norton S B, et al. Evaluating sediment chemistry and toxicity data using logistic regression modeling[J]. Environmental Toxicology and Chemistry, 1999, 18(6): 1311-1322. doi: 10.1002/etc.5620180634

    CrossRef Google Scholar

    [23] Field L J, MacDonald D D, Norton S B, et al. Predicting amphipod toxicity from sediment chemistry using logistic regression models[J]. Environmental Toxicology and Chemistry, 2002, 21(9): 1993-2005. doi: 10.1002/etc.5620210929

    CrossRef Google Scholar

    [24] Forstner U, Wittmann G T W著. 王忠玉, 姚重华译. 水环境的重金属污染[M]. 北京: 海洋出版社, 1987.

    Google Scholar

    Forstner U, Wittmann G T W(Editors). Wang Z Y, Yao Z H(Translators). Metal pollution in the aquatic environment[M]. Beijing: China Ocean Press, 1987.

    Google Scholar

    [25] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 1987.

    Google Scholar

    Chi Q H, Yan M C. Handbook of applied geochemical element abundance data[M]. Beijing: Geological Publishing House, 1987.

    Google Scholar

    [26] 黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994, 23(2): 140-145.

    Google Scholar

    Li T. Element abundances of China's continental crust and its sedimentary layer and upper continental crust[J]. Geochimica, 1994, 23(2): 140-145.

    Google Scholar

    [27] 史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2): 235-251.

    Google Scholar

    Shi C Y, Liang M, Feng B. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 2016, 41(2): 235-251.

    Google Scholar

    [28] 程志中, 谢学锦, 潘含江, 等. 中国南方地区水系沉积物中元素丰度[J]. 地学前缘, 2011, 18(5): 289-295.

    Google Scholar

    Cheng Z Z, Xie X J, Pan H J, et al. Abundance of elements in stream sediment in South China[J]. Earth Science Frontiers, 2011, 18(5): 289-295.

    Google Scholar

    [29] 宁增平, 蓝小龙, 黄正玉, 等. 贺江水系沉积物重金属空间分布特征、来源及潜在生态风险[J]. 中国环境科学, 2017, 37(8): 3036-3047. doi: 10.3969/j.issn.1000-6923.2017.08.028

    CrossRef Google Scholar

    Ning Z P, Lan X L, Huang Z Y, et al. Spatial distribution characteristics, sources and potential ecological risk of heavy metals in sediments of Hejiang River[J]. China Environmental Science, 2017, 37(8): 3036-3047. doi: 10.3969/j.issn.1000-6923.2017.08.028

    CrossRef Google Scholar

    [30] Long E R, Macdonald D D, Smith S L, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Management, 1995, 19(1): 81-97. doi: 10.1007/BF02472006

    CrossRef Google Scholar

    [31] 杜耘. 保护长江生态环境, 统筹流域绿色发展[J]. 长江流域资源与环境, 2016, 25(2): 171-179.

    Google Scholar

    Du Y. Protecting the eco-environment, and striving for the green development in the Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2016, 25(2): 171-179.

    Google Scholar

    [32] 李亚东. 昆明幅G-48-25 1/20万地球化学图说明书: 水系沉积物测量[D]. 昆明: 云南省地质矿产勘查开发局, 1989.

    Google Scholar

    Li Y D. Kunming sheet G-48-25 1: 200000 geochemical map manual: Water system sediment survey[D]. Kunming: Yunnan Provincial Bureau of Geology and Mineral Exploration and Development, 1989.

    Google Scholar

    [33] 曹其林. 昆明幅G-48-25 1/20万区域水文地质普查报告[D]. 昆明: 云南省地质局水文工程地质公司, 1977.

    Google Scholar

    Cao Q L. Kunming sheet G-48-25 1: 200000 regional hydrogeological survey report[D]. Kunming: Hydrological Engineering Geology Company of Yunnan Geology Bureau, 1977.

    Google Scholar

    [34] 张丽, 段云龙, 字润祥, 等. 螳螂川河流磷、氟污染与防治对策分析研究[J]. 环境科学导刊, 2015, 34(6): 31-35.

    Google Scholar

    Zhang L, Duan Y L, Zi R X, et al. Study on phosphorus and fluorine pollution and control in Tanglangchuan River[J]. Environmental Science Survey, 2015, 34(6): 31-35.

    Google Scholar

    [35] Wilding L P. Spatial variability: Its documentation, accommodation and implication to soil surveys[M]//Wageningen. Soil spatial variability. 1985.

    Google Scholar

    [36] 邵晓华. 云南滇池底泥重金属元素分布规律研究[D]. 南京: 南京师范大学, 2003.

    Google Scholar

    Shao X H. Study on the distribution of heavy metal elements in sediment of Dianchi Lake, Yunnan[D]. Nanjing: Nanjing Normal University, 2003.

    Google Scholar

    [37] 肖冬冬. 滇池宝象河表层沉积物重金属特征及潜在生态风险评价[D]. 昆明: 云南师范大学, 2018.

    Google Scholar

    Xiao D D. Characteristics and potential ecological risk assessment of heavy metals in surface sediments of Baoxiang River, Dianchi[D]. Kunming: Yunnan Normal University, 2018.

    Google Scholar

    [38] 熊燕, 宁增平, 刘意章, 等. 南盘江流域(云南段)水系沉积物中重金属含量分布特征及其污染状况评价[J]. 地球与环境, 2017, 45(2): 171-178.

    Google Scholar

    Xiong Y, Ning Z P, Liu Y Z, et al. Distribution and pollution evaluation of heavy metals in sediments in the Nanpan River Basin (Yunnan Section)[J]. Earth and Environment, 2017, 45(2): 171-178.

    Google Scholar

    [39] 王丹. 长江上游(宜宾至泸州段)毒害污染物分布特征及风险评价——以重金属和多环芳烃为例[D]. 邯郸: 河北工程大学, 2016.

    Google Scholar

    Wang D. Pollution characteristics and risk of persistent toxic substances from Yangtze River (Yibin to Luzhou)-A case study for heavy metal and polycyclic aromatic hydrocarbons[D]. Handan: Hebei University of Engineering, 2016.

    Google Scholar

    [40] 孙洁. 岷江中游水系沉积物中重金属的环境地球化学评价[D]. 成都: 成都理工大学, 2010.

    Google Scholar

    Sun J. Environmental geochemistry evolution of heavy metal elements in sediments from middle reaches of Minjiang River[D]. Chengdu: Chengdu University of Technology, 2010.

    Google Scholar

    [41] 郭威. 三峡库区低水运行期表层沉积物重金属污染特征研究[D]. 郑州: 华北水利水电大学, 2016.

    Google Scholar

    Guo W. Study on heavy metals pollution of sediments in the Three Gorges Reservoir during its operating period with low water level[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016.

    Google Scholar

    [42] 李利荣, 王艳丽, 高璟赟, 等. 中国表层水体沉积物中多环芳烃源解析及评价[J]. 中国环境监测, 2013, 29(6): 92-98.

    Google Scholar

    Li L R, Wang Y L, Gao J Y, et al. Source and risk assessment of PAHs in surface sediments from rivers and lakes of China[J]. Environmental Monitoring in China, 2013, 29(6): 92-98.

    Google Scholar

    [43] 詹咏, 韦婷婷, 叶汇彬, 等. 三亚河沉积物PAHS和PCBs的分布、来源及风险评价[J]. 环境科学, 2020, doi: 10.13227/j.hjkx.202008267.

    CrossRef Google Scholar

    Zhan Y, Wei T T, Ye H B, et al. Distribution, sources, and ecological risk evolution of the PAHs and PCBs in the sediments from Sanya River[J]. Environmental Science, 2020, doi: 10.13227/j.hjkx.202008267.

    CrossRef Google Scholar

    [44] 王喆, 卢丽, 裴建国. 城郊型地下河表层沉积物多环芳烃来源分析与生态风险评价[J]. 环境化学, 2020, 39(10): 2733-2741.

    Google Scholar

    Wang Z, Lu L, Pei J G. Source analysis and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from suburban type underground river[J]. Environmental Chemistry, 2020, 39(10): 2733-2741.

    Google Scholar

    [45] 高秋生, 焦立新, 杨柳, 等. 白洋淀典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2018, 39(4): 1616-1627.

    Google Scholar

    Gao Q S, Jiao L X, Yang L, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Baiyangdian Lake[J]. Environmental Science, 2018, 39(4): 1616-1627.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(5)

Article Metrics

Article views(2421) PDF downloads(91) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint