Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

LIU Wan, LI Dan-dan, LIU Sheng-ao. Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163
Citation: LIU Wan, LI Dan-dan, LIU Sheng-ao. Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163

Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS

More Information
  • BACKGROUND

    In recent years, copper isotopes have been widely applied in supergene environments and biogeochemical processes, acting as novel tracers for soil pollution and biogeochemical cycles during pedogenesis. To date, Cu isotope studies on natural soils have commonly analyzed basalt geostandards for monitoring data quality. However, the contents of copper, matrix ions, and organic matter in the soil and silicate rock are very different. For example, the copper content in silicate rock is >80μg/g, and the copper content in some soils is very low, that is, < 20μg/g. The use of silicate standard materials as reference samples to monitor the data quality of soil samples lacks representativeness.

    OBJECTIVES

    To provide new soil standards for high-precision Cu isotope analysis, this study reports high-precision copper isotope data for four soil reference materials (GBW07443, GBW07425, GBW07427, and GBW07389), expressed as δ65Cu relative to NIST SRM 976, which were measured using a multi-collector inductively coupled plasma-mass spectrometer (MC-ICP-MS).

    METHODS

    Soil samples were completely dissolved in high-pressure bombs in a muffle furnace. Complete separation of Cu from the matrices was obtained using a strong anion exchange resin (AG MP-1M). The instrument mass bias was corrected using the standard sample-standard method.

    RESULTS

    The long-term external reproducibility was higher than ±0.05‰ (n=306, 2SD). Cu isotopic compositions of the four soil reference materials, GBW07443, GBW07425, GBW07427, and GBW07389, from the China National Bureau of Standards were -0.04‰±0.04‰ (n=9, 2SD); -0.07‰±0.05‰ (n=12, 2SD); -0.06‰±0.04‰ (n=12, 2SD); and -0.02‰±0.06‰ (n=12, 2SD), respectively.

    CONCLUSIONS

    The δ65Cu values of these reference materials were close to zero and corresponded to the intermediate values of natural soils. Moreover, the sample was easy to obtain, and the experimental results showed uniformity in its chemical and copper isotopic compositions, making it suitable as a standard material for monitoring the reliability of the soil copper isotope chemistry and the mass spectrometry data.

  • 加载中
  • [1] Huang J, Liu S A, Gao Y, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP site 1256 in the eastern equatorial Pacific[J]. Journal of Geophysical Research Solid Earth, 2016, 121: 7086-7100. doi: 10.1002/2016JB013095

    CrossRef Google Scholar

    [2] Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 543-600. doi: 10.2138/rmg.2017.82.13

    CrossRef Google Scholar

    [3] Liu S A, Liu P P, Lv Y, et al. Cu and Zn isotope frac-tionation during oceanic alteration: Implications for oceanic Cu and Zn cycles[J]. Geochimica Et Cosmochimica Acta, 2019, 257: 191-205. doi: 10.1016/j.gca.2019.04.026

    CrossRef Google Scholar

    [4] 范飞鹏, 肖惠良, 陈乐柱, 等. 粤东新寮岽铜多金属矿区钻孔深部矿体铜同位素研究[J]. 岩矿测试, 2017, 36(4): 420-429.

    Google Scholar

    Fan F P, Xiao H L, Chen L Z, et al. Copper isotope studies of a deep ore body in the Xinliaodong copper-polymetallic deposit, eastern Guangdong Province[J]. Rock and Mineral Analysis, 2017, 36(4): 420-429.

    Google Scholar

    [5] 赵晨辉, 王成辉, 赵如意, 等. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义[J]. 岩矿测试, 2020, 39(6): 908-920.

    Google Scholar

    Zhao C H, Wang C H, Zhao R Y, et al. Isotopic composition and alteration characteristics of dacite pouphy, and their prospecting significance in the Dabaoshan copper deposit of Guangdong Province[J]. Rock and Mineral Analysis, 2020, 39(6): 908-920.

    Google Scholar

    [6] Rouxel O, Fouquet Y, Ludden J N. Copper isotope system-atics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the mid-Atlantic ridge[J]. Economic Geology, 2004, 99(3): 585-600. doi: 10.2113/gsecongeo.99.3.585

    CrossRef Google Scholar

    [7] Mirnejad H, Mathur R, Einali M, et al. A comparative copper isotope study of porphyry copper deposits in Iran[J]. Geochemistry: Exploration Environment Analysis, 2010, 10(4): 413-418. doi: 10.1144/1467-7873/09-229

    CrossRef Google Scholar

    [8] Ikehata K, Notsu K, Hirata T, et al. Copper isotope chara-cteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS[J]. Economic Geology, 2011, 106(2): 307-316. doi: 10.2113/econgeo.106.2.307

    CrossRef Google Scholar

    [9] Palacios C, Rouxel O, Reich M, et al. Pleistocene re-cycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence[J]. Mineralium Deposita, 2011, 46(1): 1-7. doi: 10.1007/s00126-010-0315-6

    CrossRef Google Scholar

    [10] Mathur R, Ruiz J, Casselman M J, et al. Use of Cu iso-topes to distinguish primary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, Northern Peru[J]. Mineralium Deposita, 2012, 47(7): 755-762. doi: 10.1007/s00126-012-0439-y

    CrossRef Google Scholar

    [11] Molnar F, Manttari I, O'Brien H, et al. Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland[J]. Ore Geology Reviews, 2016, 77: 133-162. doi: 10.1016/j.oregeorev.2016.02.012

    CrossRef Google Scholar

    [12] Wang P, Dong G C, Santosh M, et al. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, southwest China[J]. Ore Geology Reviews, 2017, 88: 822-831. doi: 10.1016/j.oregeorev.2016.11.023

    CrossRef Google Scholar

    [13] Zhao Y, Xue C, Liu S A, et al. Copper isotope fraction-ation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J]. Lithos, 2017, 286: 206-215.

    Google Scholar

    [14] Syverson D D, Borrok D M, Niebuhr S, et al. Chalcopyrite-dissolved Cu isotope exchange at hydrothermal-conditions: Experimental constraints at 350℃ and 50MPa[J]. Geochimica Et Cosmochimica Acta, 2021, 298: 191-206. doi: 10.1016/j.gca.2021.02.005

    CrossRef Google Scholar

    [15] Liu S A, Huang J, Liu J G, et al. Copper isotopic com-position of the silicate earth[J]. Earth & Planetary Science Letters, 2015, 427(1): 95-103.

    Google Scholar

    [16] Huang J, Huang F, Wang Z C, et al. Copper isotope frac-tionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J]. Geochimica Et Cosmochimica Acta, 2017, 211: 48-63. doi: 10.1016/j.gca.2017.05.007

    CrossRef Google Scholar

    [17] Bigalke M, Weyer S, Kobza J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica Et Cosmochimica Acta, 2010, 74(23): 6801-6813. doi: 10.1016/j.gca.2010.08.044

    CrossRef Google Scholar

    [18] Bigalke M, Weyer S, Wilcke W. Stable Cu isotope fraction-ation in soils during oxic weathering and podzolization[J]. Geochimica Et Cosmochimica Acta, 2011, 75(11): 3119-3134. doi: 10.1016/j.gca.2011.03.005

    CrossRef Google Scholar

    [19] Babcsányi I, Imfeld G, Granet M, et al. Copper stable isotopes to trace copper behavior in wetland systems[J]. Environmental Science and Technology, 2014, 48(10): 5520-5529. doi: 10.1021/es405688v

    CrossRef Google Scholar

    [20] Fekiacova Z, Cornu S, Pichat S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of The Total Environment, 2015, 517: 96-105. doi: 10.1016/j.scitotenv.2015.02.046

    CrossRef Google Scholar

    [21] Su J, Mathur R, Brumm G, et al. Tracing copper migra-tion in the Tongling area through copper isotope values in soils and waters[J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2661. doi: 10.3390/ijerph15122661

    CrossRef Google Scholar

    [22] Zeng J, Han G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110663.

    Google Scholar

    [23] Liu S A, Teng F Z, Li S, et al. Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles[J]. Geochimica Et Cosmochimica Acta, 2014, 146: 59-75. doi: 10.1016/j.gca.2014.09.040

    CrossRef Google Scholar

    [24] Vareda J P, Valente A J M, Duraes L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review[J]. Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126

    CrossRef Google Scholar

    [25] Mathur R, Munk L, Nguyen M, et al. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska[J]. Economic Geology, 2013, 108(3): 529-541. doi: 10.2113/econgeo.108.3.529

    CrossRef Google Scholar

    [26] Wang Q, Zhou L, Little S H, et al. The geochemical behavior of Cu and its isotopes in the Yangtze River[J]. Science of The Total Environment, 2020, 728: 138428. doi: 10.1016/j.scitotenv.2020.138428

    CrossRef Google Scholar

    [27] Kříbek B, Sípková A, Vojtěch E, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121-135. doi: 10.1016/j.chemgeo.2018.05.035

    CrossRef Google Scholar

    [28] Kusonwiriyawong C, Bigalke M, Cornu S, et al. Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol[J]. Geoderma, 2017, 300: 44-54. doi: 10.1016/j.geoderma.2017.04.003

    CrossRef Google Scholar

    [29] Kíbek B, Míková J, Knésl I, et al. Uptake of trace elements and isotope fractionation of Cu and Zn by birch (Betula pendula) growing on mineralized coal waste pile[J]. Applied Geochemistry, 2020: 104741.

    Google Scholar

    [30] Masbou J, Viers J, Grande J A, et al. Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions[J]. Environmental Pollution, 2020, 266(Part 2): 115104.

    Google Scholar

    [31] 张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355.

    Google Scholar

    Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355.

    Google Scholar

    [32] Mathur R, Jin L, Prush V, et al. Cu isotopes and concen-trations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA)[J]. Chemical Geology, 2012, 304-305: 175-184. doi: 10.1016/j.chemgeo.2012.02.015

    CrossRef Google Scholar

    [33] Liu S A, Li D, Li S, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(1): 122-133. doi: 10.1039/C3JA50232E

    CrossRef Google Scholar

    [34] Dideriksen K, Baker J A, Stipp S L S. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica Et Cosmochimica Acta, 2006, 70(1): 118-132. doi: 10.1016/j.gca.2005.08.019

    CrossRef Google Scholar

    [35] Amet Q, Fitoussi C. Chemical procedure for Zn purification and double spike method for high precision measurement of Zn isotopes by MC-ICPMS[J]. International Journal of Mass Spectrometry, 2020, 457: 116413. doi: 10.1016/j.ijms.2020.116413

    CrossRef Google Scholar

    [36] Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1): 139-149.

    Google Scholar

    [37] Sossi P A, Halverson G P, Nebel O, et al. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 129-149. doi: 10.1111/j.1751-908X.2014.00298.x

    CrossRef Google Scholar

    [38] Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 280-287. doi: 10.1039/C4JA00488D

    CrossRef Google Scholar

    [39] Bao Z, Zong C, Liang P, et al. Direct measurement of Cu and Pb isotopic ratios without column chemistry for bronze materials using MC-ICP-MS[J]. Analytical Methods, 2020, 12: 2599-2607. doi: 10.1039/D0AY00561D

    CrossRef Google Scholar

    [40] Zhang Y, Bao Z, Lv N, et al. Copper isotope ratio mea-surements of Cu-dominated minerals without column chromatography using MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 609. doi: 10.3389/fchem.2020.00609

    CrossRef Google Scholar

    [41] Wang Q, Zhou L, Feng L, et al. Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 2732-2739. doi: 10.1039/D0JA00096E

    CrossRef Google Scholar

    [42] Lv N, Bao Z, Chen L, et al. Accurate determination of Cu isotope compositions in Cu-bearing minerals using microdrilling and MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2020, 457: 116414. doi: 10.1016/j.ijms.2020.116414

    CrossRef Google Scholar

    [43] Yuan H, Yuan W, Bao Z, et al. Development of two new copper isotope standard solutions and their copper isotopic compositions[J]. Geostandards and Geoanalytical Research, 2016, 41: 77-84.

    Google Scholar

    [44] Sullivan K, Layton-Matthews D, Leybourne M, et al. Copper isotopic analysis in geological and biological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 44: 349-362. doi: 10.1111/ggr.12315

    CrossRef Google Scholar

    [45] 唐索寒, 闫斌, 朱祥坤, 等. 玄武岩标准样品铁铜锌同位素组成[J]. 岩矿测试, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    CrossRef Google Scholar

    Tang S H, Y B, Zhu X K, et al. Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J]. Rock and Mineral Analysis, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    CrossRef Google Scholar

    [46] Feng C X, Liu S, Chi G X, et al. Zinc, copper, and strontium isotopic variability in the Baiyangping Cu-Pb-Zn-Ag polymetallic ore field, Lanping Basin, southwest China[J]. Acta Geochimica, 2021, 16: 1-18.

    Google Scholar

    [47] 李丹丹. 低温过程中Cu-Zn同位素分馏的实验地球化学研究[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    Li D D. Experimental study of Cu and Zn isotope fractionation at low temperature[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [48] Hu Y, Teng F Z. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(2): 338-346. doi: 10.1039/C8JA00335A

    CrossRef Google Scholar

    [49] Moynier F, Koeberl C, Beck P, et al. Isotopic fraction-ation of Cu in tektites[J]. Geochimica Et Cosmochimica Acta, 2010, 74(2): 799-807. doi: 10.1016/j.gca.2009.10.012

    CrossRef Google Scholar

    [50] Moeller K, Schoenberg R, Pedersen R B, et al. Calibra-tion of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 177-199. doi: 10.1111/j.1751-908X.2011.00153.x

    CrossRef Google Scholar

    [51] Li W Q, Jackson S E, Pearson N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology, 2009, 258(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.06.047

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(1497) PDF downloads(166) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint