Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

ZHAO Xiu-feng, GAO Xiao-li, CAO Lei, CAO Jing-yang, LU Xin-cheng. Preparation of Certified Reference Materials for Soil Limit Water Content[J]. Rock and Mineral Analysis, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119
Citation: ZHAO Xiu-feng, GAO Xiao-li, CAO Lei, CAO Jing-yang, LU Xin-cheng. Preparation of Certified Reference Materials for Soil Limit Water Content[J]. Rock and Mineral Analysis, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119

Preparation of Certified Reference Materials for Soil Limit Water Content

  • BACKGROUND

    Soil limit water content is an important basis for fine-grained soil classification and engineering property evaluation. Additionally, it is an important evaluation index for clay exploration and industrial utilization. Inaccurate test results of soil limit water content may lead to serious engineering safety accidents and personal and economic property losses. Certified reference materials (CRMs) are important for ensuring the accuracy, comparability, and effectiveness of the analyzed data. However, no certified reference materials for soil limit water content exist; therefore, the preparation of CRMs for the soil limit water content holds great significance.

    OBJECTIVES

    To prepare CRMs of soil limit water content.

    METHODS

    In strict accordance with the specifications and standards, such as "Technical Specifications for First-Class Reference Materials" (JJF 1006-1994) and "General Principles and Statistical Principles for the Valuation of Reference Materials" (JJF 1343-2012), five standard materials of soil limit water content (GBW07969, GBW07970, GBW07971, GBW07972, and GBW07973) have been developed. These samples were collected from Huaibei of Anhui province, Datong of Shanxi province, and Nanjing of Jiangsu province. After artificial crushing, drying, and sterilization, the samples were finely crushed to less than 0.25mm by a large ball mill. After particle size analysis, the samples were bottled and numbered in a clean room.

    RESULTS

    Twenty-five bottles of each sample were randomly selected for homogeneity testing. All the measured values of F were less than F0.05 (24, 25)=1.96, and the relative standard deviation (RSD) was between 1.16% and 2.67%, which indicated good uniformity. There were no significant differences in the long-term stability test (12months) and the short-term stability test (60℃, -20℃). The certified values of 10mm liquid limit, plastic limit, and plasticity index were 26.3%-39.9%, 16.9%-22.2%, and 10.0%-17.7%, respectively. The gradient series was significant, which included silty clayey and clayey type of soils.

    CONCLUSIONS

    Five first classes of National CRMs (GBW07969, GBW07970, GBW07971, GBW07972, and GBW07973) of soil limit water content were successfully prepared. This series of CRMs can be used for calibration of instruments and equipment, quality control, capability verification, and other technical quality activities, which provide a guarantee for the accuracy requirements of soil limit water test data in hydraulic environment geological exploration, geotechnical engineering exploration, clay mine exploration, and other related disciplines.

  • 加载中
  • [1] 赵欢, 毕升. 土力学与地基基础[M]. 北京: 北京理工大学出版社, 2018.

    Google Scholar

    Zhao H, Bi S. Soil mechanics and foundation[M]. Beijing: Beijing Institute of Technology Press, 2018.

    Google Scholar

    [2] 邓志飞, 刘吉夫, 郭兰兰, 等. 粘土矿物组成对土体液化特性的影响研究进展[J]. 灾害学, 2020, 35(3): 213-219. doi: 10.3969/j.issn.1000-811X.2020.03.039

    CrossRef Google Scholar

    Deng Z F, Liu J F, Guo L L, et al. Research process on the influence of clay mineral composition on soil liquefaction characteristics[J]. Journal of Catastrophology, 2020, 35(3): 213-219. doi: 10.3969/j.issn.1000-811X.2020.03.039

    CrossRef Google Scholar

    [3] 袁士才, 田宗坤, 张开发, 等. 掺和料对改良土液塑限影响试验研究[J]. 低温建筑技术, 2017, 39(1): 84-85.

    Google Scholar

    Yuan S C, Tian Z K, Zhang K F, et al. Research on effect of admixture on liquid limit and plastic limit of improved soil[J]. Low Temperature Architecture Technology, 2017, 39(1): 84-85.

    Google Scholar

    [4] 毕庆涛, 曹世超, 吴琦, 等. 渤海近海口软黏土液塑限试验研究[J]. 人民黄河, 2019, 41(5): 148-151. doi: 10.3969/j.issn.1000-1379.2019.05.032

    CrossRef Google Scholar

    Bi Q T, Cao S C, Wu Q, et al. Experimental study on liquid-plastic limit of soft clay in Bohai seaport[J]. Yellow River, 2019, 41(5): 148-151. doi: 10.3969/j.issn.1000-1379.2019.05.032

    CrossRef Google Scholar

    [5] 朱慧鑫, 邓羽松, 夏振刚, 等. 鄂东南花岗岩崩岗剖面土壤液塑限特征及影响因子分析[J]. 中国水土保持科学, 2016, 14(5): 1-7.

    Google Scholar

    Zhu H X, Deng Y S, Xia Z G, et al. Liquid and plastic limits and influencing factors for the profiles of collapse slope in southeast of Hubei Province[J]. Science of Water and Soil Conservation, 2016, 14(5): 1-7.

    Google Scholar

    [6] 董均贵, 季春生. 粒径对液塑限的影响及影响机理研究[J]. 工程建设, 2017, 49(3): 13-17.

    Google Scholar

    Dong J G, Ji C S. Discussion on influence of particle size on liquid and plastic limit and its influence mechanism[J]. Engineering Construction, 2017, 49(3): 13-17.

    Google Scholar

    [7] 陈菊腾, 刘建文. 细粒土的塑性指数与黏粒含量的关系分析[J]. 工程建设与设计, 2020(16): 57-58.

    Google Scholar

    Chen J T, Liu J W. Relationship analysis between plasticity index and clay content of fine grained soil[J]. Construction & Design for Project, 2020(16): 57-58.

    Google Scholar

    [8] 蒋玉, 饶真勇, 罗德兵. 不同限定粒径下土体液塑限指标分析[J]. 山西建筑, 2020, 46(6): 64-66. doi: 10.3969/j.issn.1009-6825.2020.06.027

    CrossRef Google Scholar

    Jiang Y, Rao Z Y, Luo D B. Analysis of soil body fluid plastic limit index under different limited particle size[J]. Shanxi Achitecture, 2020, 46(6): 64-66. doi: 10.3969/j.issn.1009-6825.2020.06.027

    CrossRef Google Scholar

    [9] Adunoye G O, Badmus A B, Sagbele S A. Experimental investigation of the influence of gradation parameters on Atterberg limits of soil[J]. Archives of Current Research International, 2018, 15(4): 1-6. doi: 10.9734/ACRI/2018/45840

    CrossRef Google Scholar

    [10] 董金玉, 赵亚文. 不同含水率下高低液塑限红黏土抗剪强度特性研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3): 84-87. doi: 10.3969/j.issn.1002-5634.2018.03.015

    CrossRef Google Scholar

    Dong J Y, Zhao Y W. Study on shear strength of high and low liquid plastic limit red clay with different water contents[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 84-87. doi: 10.3969/j.issn.1002-5634.2018.03.015

    CrossRef Google Scholar

    [11] 罗爽, 高华端, 陶倩, 等. 黔中地区坡耕地土壤机械组成对界限含水量的影响[J]. 土壤通报, 2020, 51(3): 580-586.

    Google Scholar

    Luo S, Gao H D, Tao Q, et al. Influence of soil mechanical composition on the atterberg limits in the slope farmland of central Guizhou[J]. Chinese Journal of Soil Science, 2020, 51(3): 580-586.

    Google Scholar

    [12] 于泽溪, 李育超, 陈冠年. 钠质膨润土渗透性与膨胀性及可塑性的相关性[J]. 哈尔滨工业大学学报, 2020, 52(11): 97-106. doi: 10.11918/201907039

    CrossRef Google Scholar

    Yu Z X, Li Y C, Chen G N. Correlation between permeability, swelling, and plasticity of sodium bentonite[J]. Journal of Harbin Institute of Technology, 2020, 52(11): 97-106. doi: 10.11918/201907039

    CrossRef Google Scholar

    [13] 李善梅, 刘之葵, 蒙剑坪. pH值对桂林红黏土界限含水率的影响及其机理分析[J]. 岩土工程学报, 2017, 39(10): 1814-1822. doi: 10.11779/CJGE201710009

    CrossRef Google Scholar

    Li S M, Liu Z K, Meng J P. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. doi: 10.11779/CJGE201710009

    CrossRef Google Scholar

    [14] 周凤玺, 张海威, 张家齐. 基于粒间毛细作用探讨界限含水量[J]. 兰州理工大学学报, 2018, 44(3): 115-118. doi: 10.3969/j.issn.1673-5196.2018.03.022

    CrossRef Google Scholar

    Zhou F X, Zhang H W, Zhang J Q. Probe into liquid and plastic limits of fine-grained soils with intergranular capillary[J]. Journal of Lanzhou University of Technology, 2018, 44(3): 115-118. doi: 10.3969/j.issn.1673-5196.2018.03.022

    CrossRef Google Scholar

    [15] 刘朋飞, 王树英, 阳军生, 等. 渣土改良剂对黏土液塑限影响及机理分析[J]. 哈尔滨工业大学学报, 2018, 50(6): 91-96.

    Google Scholar

    Liu P F, Wang S Y, Yang J S, et al. Effect of soil conditioner on Atterberg limits of clays and its mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 91-96.

    Google Scholar

    [16] Zhou B C, Lu N. Correlation between Atterberg limits and soil adsorptive water[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020162. doi: 10.1061/(ASCE)GT.1943-5606.0002463

    CrossRef Google Scholar

    [17] Widjaja B, Nirwanto A F. Effect of various temperatures to liquid limit, plastic limit, and plasticity index of clays[J]. IOP Conference Series: Materials Science and Engineering, 2019, 508(1): 012099. doi: 10.1088/1757-899X/508/1/012099/pdf

    CrossRef Google Scholar

    [18] Arthur E, Rehman H U, Tuller M, et al. Estimating Atterberg limits of soils from hygroscopic water content[J]. Geoderma, 2021, 381: 114698. doi: 10.1016/j.geoderma.2020.114698

    CrossRef Google Scholar

    [19] Zhao M Z, Luo Q, Wei M, et al. Evaluation for intrinsic compressibility of reconstituted clay using liquid limit, initial water content and plasticity index[J]. European Journal of Environmental and Civil Engineering, 2019, 23(11): 1332-1350. doi: 10.1080/19648189.2017.1347069

    CrossRef Google Scholar

    [20] Vardanega P J, Hickey C L, Lau K, et al. Investigation of the Atterberg limits and undrained fall-cone shear strength variation with water content of some peat soils[J]. International Journal of Pavement Research and Technology, 2019, 12(2): 131-138. doi: 10.1007/s42947-019-0017-0

    CrossRef Google Scholar

    [21] Spagnoli G, Feinendegen M. Relationship between measured plastic limit and plastic limit estimated from undrained shear strength, water content ratio and liquidity index[J]. Clay Minerals, 2017, 52(4): 509-519. doi: 10.1180/claymin.2017.052.4.08

    CrossRef Google Scholar

    [22] 《工程地质手册》编委会. 工程地质手册(第5版)[M]. 北京: 中国建筑工业出版社, 2018.

    Google Scholar

    Editing committee of 《Handbook of Engineering Geology》. Handbook of engineering geology (The fifth edition)[M]. Beijing: China Architecture Press, 2018.

    Google Scholar

    [23] 史福刚, 张佳宝, 姚健. 砂姜黑土界限含水率及适耕性研究[J]. 河南农业科学, 2017, 46(12): 59-64.

    Google Scholar

    Shi F G, Zhang J B, Yao J. Atterberg limits and tillability of different types of lime concretion black soil[J]. Journal of Henan Agricultural Sciences, 2017, 46(12): 59-64.

    Google Scholar

    [24] 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2014.

    Google Scholar

    Editorial committee of 《Handbook on Industrial Requirements for Mineral Resources》. Handbook on industrial requirements for mineral resources[M]. Beijing: Geological Publishing House, 2014.

    Google Scholar

    [25] 苗立锋, 包镇红, 宋福生, 等. 几种高岭土的组成与可塑性研究[J]. 硅酸盐通报, 2014, 33(2): 333-336.

    Google Scholar

    Miao L F, Bao Z H, Song F S, et al. Study on the composition and plasticity of several kaolin[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(2): 333-336.

    Google Scholar

    [26] 张艾丽, 冯荣, 成龙胜. 振捣法提高硬质高岭土可塑性的研究[J]. 硅酸盐通报, 2019, 38(3): 884-888.

    Google Scholar

    Zhang A L, Feng R, Cheng L S. Study on improving plasticity of hard kaolin by vibrating tamping[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 884-888.

    Google Scholar

    [27] Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 599-601.

    Google Scholar

    [28] Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 333-350.

    Google Scholar

    [29] 王毅民, 王晓红, 高玉淑. 地质标准物质粒度测量与表征的现代方法[J]. 地质通报, 2009, 28(1): 137-145.

    Google Scholar

    Wang Y M, Wang X H, Gao Y S. Modern methods for the measurement and characterization of particle size in geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(1): 137-145.

    Google Scholar

    [30] 王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804-807.

    Google Scholar

    Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(6): 804-807.

    Google Scholar

    [31] 李庆庆, 刘冰, 周伟兵. 中美英规范界限含水率试验差异及数据对比[J]. 水运工程, 2020(5): 224-228.

    Google Scholar

    Li Q Q, Liu B, Zhou W B. Difference and data comparative of limit moisture content test in Chinese, American and British codes[J]. Port & Waterway Engineering, 2020(5): 224-228.

    Google Scholar

    [32] Sharma B, Sridharan A. Liquid and plastic limits of clays by cone method[J]. International Journal of Geo-Engineering, 2018, 9(1): 22. doi: 10.1186/s40703-018-0092-0

    CrossRef Google Scholar

    [33] 张宗堂, 高文华, 黄建平, 等. 基于液塑限联合测定法的界限含水量确定方法研究[J]. 湖南科技大学学报(自然科学版), 2016, 31(3): 58-63.

    Google Scholar

    Zhang Z T, Gao W H, Huang J P, et al. Study on determination method of critical moisture content based on liquid-plastic limit combined measurement[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2016, 31(3): 58-63.

    Google Scholar

    [34] 彭慈德, 常留成. 数学解析法在界限含水率试验中的判别式研究[J]. 路基工程, 2018(1): 16-19, 24.

    Google Scholar

    Peng C D, Chang L C. Discriminant study of mathematical analytic method in boundary moisture content test[J]. Subgrade Engineering, 2018(1): 16-19, 24.

    Google Scholar

    [35] 陈孟元. 土壤界限含水率自动检测系统设计研究[J]. 工程设计学报, 2017, 24(4): 473-479.

    Google Scholar

    Chen M Y. Research on design of automatic detection system for soil limit moisture content[J]. Chinese Journal of Engineering Design, 2017, 24(4): 473-479.

    Google Scholar

    [36] 王清海, 杨贵林, 李友, 等. 细粒土界限含水率液、塑限联合测定自动化方案的分析与探讨[J]. 隧道建设, 2020, 40(5): 644-651.

    Google Scholar

    Wang Q H, Yang G L, Li Y, et al. Analysis and discussion on automatic scheme of combined determination of liquid and plastic limits for limit moisture content of fine-grained soil[J]. Tunnel Construction, 2020, 40(5): 644-651.

    Google Scholar

    [37] 王苏明, 翟培军, 牛兴荣. 实验室能力验证实践[M]. 北京: 中国标准出版社, 2006.

    Google Scholar

    Wang S M, Zhai P J, Niu X R. Laboratory proficiency testing practice[M]. Beijing: Standards Press of China, 2006.

    Google Scholar

    [38] 赵秀峰, 高孝礼, 曹景洋, 等. 土的两种塑限测试方法精密度比较[J]. 工程勘察, 2021, 49(6): 19-24.

    Google Scholar

    Zhao X F, Gao X L, Cao J Y, et al. Comparison of the precision of two plastic limit testing methods of soil[J]. Geotechnical Investigation & Surveying, 2021, 49(6): 19-24.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(6)

Article Metrics

Article views(2792) PDF downloads(130) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint