Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

HU Zhi-zhong, YAN Xiong, WANG Kun-yang, WANG Guan, PAN Zhong-xi, DU Gu. Characteristics of Carbon and Oxygen Isotope Standard Materials of Carbonates and Their Effect on Isotope Analysis and Standard Preservation[J]. Rock and Mineral Analysis, 2021, 40(4): 476-490. doi: 10.15898/j.cnki.11-2131/td.202011150143
Citation: HU Zhi-zhong, YAN Xiong, WANG Kun-yang, WANG Guan, PAN Zhong-xi, DU Gu. Characteristics of Carbon and Oxygen Isotope Standard Materials of Carbonates and Their Effect on Isotope Analysis and Standard Preservation[J]. Rock and Mineral Analysis, 2021, 40(4): 476-490. doi: 10.15898/j.cnki.11-2131/td.202011150143

Characteristics of Carbon and Oxygen Isotope Standard Materials of Carbonates and Their Effect on Isotope Analysis and Standard Preservation

More Information
  • BACKGROUND

    Carbon and oxygen isotopes in carbonates are commonly used in geology and climate studies. Reference materials for these isotopes are an important basis for analysis and data comparison. Understanding the differences in the characteristics of different standard materials is helpful for the selection and use of standards, improvement of heterogeneity, and establishment of optimal experimental conditions.

    OBJECTIVES

    To investigate the influence of the characteristics of carbon and oxygen isotope standard materials of carbonates on isotope analysis and preservation of the standards.

    METHODS

    In this study, X-ray diffraction (XRD), optical microscopy, and energy dispersive X-ray scanning electron microscopy (EDX-SEM) were used to analyze carbonate carbon and oxygen isotope reference materials with different properties, such as provenance, particle size, particle morphology and structure, and purity. The δ13C and δ18O values of some carbonate reference materials were determined by the continuous flow phosphoric acid method to explore their characteristics and their influence on isotope analysis and standard preservation.

    RESULTS

    Natural carbonate reference materials generally contain non-calcium carbonate components, such as small amounts of quartz and other particles with obvious differences in properties. There are also differences in particle size, morphology, microstructure, and mineral composition between different standard materials and between standard material particles. The δ13C and δ18O values of different standard materials were determined, and most results were consistent with the recommended values. The standard deviations of the δ13C and δ18O values of IAEA-CO-8 were larger than those of other standard materials, which is attributable to their complex composition and homogeneity. The standard deviation of the δ18O value of NBS20 was large, while the δ18O value of 7902 deviated from the recommended value. It is inferred that their powdery and fine particles are more likely to be affected by carbon dioxide and water in air.

    CONCLUSIONS

    Based on previous research as well as the current study, it is believed that under the recommended usage amount, the properties of natural carbonate reference materials have a limited impact on the accuracy of analysis. To ensure the accuracy of microanalysis and research, while selecting the standard and the particles in the standard, it is recommended to combine the characteristics of standards and materials based on the purpose of the analysis and research. At the same time, the preparation and storage of powdery and fine-grained standard materials require more attention. This study supplements information regarding the properties of carbonate carbon and oxygen isotope standard materials, which helps in the analysis and research of trace carbonate carbon and oxygen isotopes, and provides a reference for standard preservation and preparation.

  • 加载中
  • [1] 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.

    Google Scholar

    Zheng Y F, Chen J F. Stable isotope geochemistry[M]. Beijing: Science Press, 2000.

    Google Scholar

    [2] 严兆彬, 郭福生, 潘家永, 等. 碳酸盐岩C, O, Sr同位素组成在古气候、古海洋环境研究中的应用[J]. 地质找矿论丛, 2005, 20(1): 53-56. doi: 10.3969/j.issn.1001-1412.2005.01.010

    CrossRef Google Scholar

    Yan Z B, Guo F S, Pan J Y, et al. Application of C, O and Sr isotope composition of carbonates in the research of paleoclimate and paleooceanic environment[J]. Contributions to Geology and Mineral Resources Research, 2005, 20(1): 53-56. doi: 10.3969/j.issn.1001-1412.2005.01.010

    CrossRef Google Scholar

    [3] Scobar J E, Curtis J H, Brenner M, et al. Isotope mea-surements of single ostracod values and gastropod shells for climates reconstruction: Evaluation of within-sample variability and determination of optimum sample size[J]. Journal of Palealimnology, 2010, 43: 921. doi: 10.1007/s10933-009-9377-9

    CrossRef Google Scholar

    [4] Charlier B L A, Ginibre C, Morgan D, et al. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications[J]. Chemical Geology, 2006, 232(3): 113-114.

    Google Scholar

    [5] 邓文峰, 韦刚健, 李献华. 不纯碳酸盐碳氧同位素组成的在线分析[J]. 地球化学, 2005, 34(5): 495-500. doi: 10.3321/j.issn:0379-1726.2005.05.007

    CrossRef Google Scholar

    Deng W F, Wei G J, Li X H. Online analysis of carbon and oxygen isotopic compositions of impure carbonate[J]. Geochimica, 2005, 34(5): 495-500. doi: 10.3321/j.issn:0379-1726.2005.05.007

    CrossRef Google Scholar

    [6] 陶成, 把立强, 李广友, 等. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用[J]. 岩矿测试, 2006, 25(4): 334-336. doi: 10.3969/j.issn.0254-5357.2006.04.009

    CrossRef Google Scholar

    Tao C, Ba L Q, Li G Y, et al. Application of GasBench-IRMS in on-line continuous measurement of δ13C and δ18O in carbonate rock samples[J]. Rock and Mineral Analysis, 2006, 25(4): 334-336. doi: 10.3969/j.issn.0254-5357.2006.04.009

    CrossRef Google Scholar

    [7] 杜广鹏, 王旭, 张福松. GasBenchⅡ顶空瓶内空气背景对 < 100μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探[J]. 岩矿测试, 2010, 29(6): 631-638. doi: 10.3969/j.issn.0254-5357.2010.06.001

    CrossRef Google Scholar

    Du G P, Wang X, Zhang F S. Influence of the air background in GasBenchⅡ vials on the measurements of C and O isotopes in carbonates and a preliminary study on blank correction strategy[J]. Rock and Mineral Analysis, 2010, 29(6): 631-638. doi: 10.3969/j.issn.0254-5357.2010.06.001

    CrossRef Google Scholar

    [8] 朱园园, 邱海鸥, 杜永, 等. 应用GasBenchⅡ-IRMS优化碳氧同位素分析方法[J]. 岩矿测试, 2014, 33(6): 789-794.

    Google Scholar

    Zhu Y Y, Qiu H O, Du Y, et al. Evaluation and optimization of carbon and oxygen isotopes experimental conditions determinated by GasBenchⅡ-IRMS method[J]. Rock and Mineral Analysis, 2014, 33(6): 789-794.

    Google Scholar

    [9] 梁翠翠, 尹希杰, 徐勇航, 等. GasBenchⅡ-IRMS测定微量碳酸盐中碳氧同位素比值方法研究[J]. 同位素, 2015, 28(1): 41-47.

    Google Scholar

    Liang C C, Yin X J, Xu Y H, et al. Analytical method for carbon and oxygen isotope of small carbonate samples with the GasBenchⅡ-IRMS devices[J]. Journal of Isotopes, 2015, 28(1): 41-47.

    Google Scholar

    [10] Zha X P, Zhao Y Y, Zheng Y F. An online method combining a GasBenchⅡ with continuous flow isotope ratio mass spectrometry to determine the content and isotopic compositions of minor amounts of carbonate in silicate rocks[J]. Rapid Communications in Mass Spectrometry, 2010, 24(15): 2217-2226. doi: 10.1002/rcm.4632

    CrossRef Google Scholar

    [11] Breitenbach S F M, Bernasconi S M. Carbon and oxygen isotope analysis of small carbonate samples (20 to 100μg) with a GasBenchⅡ preparation device[J]. Rapid Communications in Mass Spectrometry, 2011, 25(13): 1910-1914. doi: 10.1002/rcm.5052

    CrossRef Google Scholar

    [12] 丁悌平. 稳定同位素测试技术与参考物质研究现状及发展趋势[J]. 岩矿测试, 2002, 21(4): 291-300. doi: 10.3969/j.issn.0254-5357.2002.04.011

    CrossRef Google Scholar

    Ding T P. Present status and prospect of analytical techniques and reference materials for stable isotopes[J]. Rock and Mineral Analysis, 2002, 21(4): 291-300. doi: 10.3969/j.issn.0254-5357.2002.04.011

    CrossRef Google Scholar

    [13] Tang G Q, Li X H, Li Q L, et al. A new Chinese national reference material (GBW04481) for calcite oxygen and carbon isotopic microanalysis[J]. Surface and Interface Analysis, 2019, 52(5): 190-196.

    Google Scholar

    [14] Ishimura T, Tsunogai U, Gamo T. Stable carbon and oxygen isotopic determination of sub-microgram quantities of CaCO3 to analyze individual foraminiferal shells[J]. Rapid Communications in Mass Spectrometry, 2004, 18(23): 2883-2888. doi: 10.1002/rcm.1701

    CrossRef Google Scholar

    [15] Kimoto K, Ishimura T, Tsunogai U, et al. The living triserial planktic foraminifer Gallitelliavivans (Cushman): Distribution, stable isotopes, and paleoecological implications[J]. Marine Micropaleon-tology, 2009, 71(1): 71-79.

    Google Scholar

    [16] Ishimura T, Tsunogai U, Hasegawa S, et al. Variation in stable carbon and oxygen isotopes of individual benthic for aminifera: Tracers for quantifying the magnitude of isotopic disequilibrium[J]. Biogeoences Discussions, 2012, 9(5): 6191-6218.

    Google Scholar

    [17] Zha X P, Gong B, Zheng Y F, et al. Precise carbon isotopic ratio analyses of micro amounts of carbonate and non-carbonate in basalt using continuous-flow isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(1): 48-56. doi: 10.1002/rcm.8008

    CrossRef Google Scholar

    [18] Brand W A, Coplen T B, Vogl J, et al. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report)[J]. Pure and Applied Chemistry, 2014, 86(3): 425-467. doi: 10.1515/pac-2013-1023

    CrossRef Google Scholar

    [19] 郑淑蕙, 郑斯成, 莫志超. 稳定同位素地球化学分析[M]. 北京: 北京大学出版社, 1986: 402.

    Google Scholar

    Zheng S H, Zheng S C, Mo Z C. Stable isotope geochemical analysis[M]. Beijing: Peking University Press, 1986: 402.

    Google Scholar

    [20] Lin Y, Feng L, Hao J, et al. Sintering nano-crystalline calcite: A new method of synthesizing homogeneous reference materials for SIMS analysis[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1686-1691. doi: 10.1039/C4JA00136B

    CrossRef Google Scholar

    [21] Helie J F, Hillaire-Marcel C, Groening M. Suitability of IAEA-603 as a replacement to NBS19 for small sample analysis[C]//Report to IAEA-Terrestrial Environment Laboratory. Montreal: GEOTOP-UQAM, 2013: 1-11.

    Google Scholar

    [22] Assonov S, Groening M, Fajgelj A, et al. Preparation and characterization of IAEA-603, a new primary reference material aimed at the VPDB scale realisation for δ13C and δ18O determination[J]. Rapid Communications in Mass Spectrometry, 2020, 34(20): e8867.

    Google Scholar

    [23] Helie J F, Hillaire-Marcel C. Designing working standards for stable H, C and O isotope measurements in CO2 and H2O[J]. Rapid Communications in Mass Spectrometry, 2021, 35(5): e9008.

    Google Scholar

    [24] Assonov S, Gröning M, Fajgelj A. IAEA stable isotope reference materials: Addressing the needs of atmospheric greenhouse gas monitoring[C]//The 18th WMO/IAEA meeting on carbon dioxide, other greenhouse gases and related tracers measurement techniques (GGMT-2015). California: GAW Report No. 229: 76-80.

    Google Scholar

    [25] Ishimura T, Tsunogai U, Nakagawa F. Grain-scale hete-rogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS19, NBS18, IAEA-CO-1, and IAEA-CO-8)[J]. Rapid Communications in Mass Spectrometry, 2008, 22(12): 1925-1932. doi: 10.1002/rcm.3571

    CrossRef Google Scholar

    [26] Crowley S F. Mineralogical and chemical composition of international carbon and oxygen isotope calibration material NBS19, andreference materials NBS18, IAEA-CO-1 and IAEA-CO-8[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 193-206. doi: 10.1111/j.1751-908X.2010.00037.x

    CrossRef Google Scholar

    [27] Nishida K, Ishimura T. Grain-scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA-603[J]. Rapid Communications in Mass Spectrometry, 2017, 31(22): 1875-1880. doi: 10.1002/rcm.7966

    CrossRef Google Scholar

    [28] 杨会, 唐伟, 吴夏, 等. KielⅣ-IRMS双路在线分析微量碳酸盐的碳氧同位素[J]. 岩矿测试, 2014, 33(4): 480-485. doi: 10.3969/j.issn.0254-5357.2014.04.004

    CrossRef Google Scholar

    Yang H, Tang W, Wu X, et al. Carbon and oxygen isotope analysis of trace carbonate by Kiel Ⅳ-IRMS using on-line dual technique[J]. Rock and Mineral Analysis, 2014, 33(4): 480-485. doi: 10.3969/j.issn.0254-5357.2014.04.004

    CrossRef Google Scholar

    [29] Reference sheet for IAEA-603[R]. Vienna: International Atomic Energy Agency, 2016.

    Google Scholar

    [30] Friedman I, O'Neil J, Cebula G. Two new carbonate stable isotope standards[J]. Geostandard Newsletter, 1982, 6(1): 11-12. doi: 10.1111/j.1751-908X.1982.tb00340.x

    CrossRef Google Scholar

    [31] Craig H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide[J]. Geochimica Et Cosmochimica Acta, 1957, 12(1-2): 133-149. doi: 10.1016/0016-7037(57)90024-8

    CrossRef Google Scholar

    [32] 王凤玉, 胡志中, 杜谷. X射线衍射法在有机药物研究中的运用[J]. 资源开发与市场, 2014, 30(9): 1030-1031. doi: 10.3969/j.issn.1005-8141.2014.09.002

    CrossRef Google Scholar

    Wang F Y, Hu Z Z, Du G. Progresses on X-ray diffraction analysis in organic drug research[J]. Resource Development and Market, 2014, 30(9): 1030-1031. doi: 10.3969/j.issn.1005-8141.2014.09.002

    CrossRef Google Scholar

    [33] 王坤阳, 杜谷, 杨玉杰, 等. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J]. 岩矿测试, 2014, 33(5): 634-639. doi: 10.3969/j.issn.0254-5357.2014.05.004

    CrossRef Google Scholar

    Wang K Y, Du G, Yang Y J, et al. Characteristics study of reservoirs pores and mineral compositions for black shale, northern Guizhou, by using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5): 634-639. doi: 10.3969/j.issn.0254-5357.2014.05.004

    CrossRef Google Scholar

    [34] 张琳, 刘福亮, 贾艳琨, 等. 稳定同位素分析数据标准化校准方法的讨论[J]. 环境化学, 2011, 30(3): 727-728.

    Google Scholar

    Zhang L, Liu F L, Jia Y K, et al. Discussion on standardized calibration methods for stable isotope analysis date[J]. Environmental Chemistry, 2011, 30(3): 727-728.

    Google Scholar

    [35] Paul D S G, Fórizs I. Normalization of measured stable isotopic com positions to isotope reference scales-A review[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18): 3006-3014. doi: 10.1002/rcm.3185

    CrossRef Google Scholar

    [36] 于吉顺, 雷新荣, 张锦化, 等. 矿物X射线粉晶鉴定手册(图谱)[M]. 武汉: 华中科技大学出版社, 2011.

    Google Scholar

    Yu J S, Lei X R, Zhang J H, et al. Mineral X-ray powder identification manual[M]. Wuhan: Huazhong University of Science and Technology Press, 2011.

    Google Scholar

    [37] 何道清. 激光微取样稳定同位素分析新技术[J]. 石油仪器, 1997, 11(5): 41-44.

    Google Scholar

    He D Q. The new technique of laser microsampling of isotopic analysis[J]. Petroleum Instruments, 1997, 11(5): 41-44.

    Google Scholar

    [38] Ball J D, Crowley S F, Steele D F. Carbon and oxygen isotope ratio analysis of small carbonate samples by conventional phosphoric acid digestion: Sample preparation and calibration[J]. Rapid Communications in Mass Spectrometry, 1996, 10(8): 987-995. doi: 10.1002/(SICI)1097-0231(19960610)10:8<987::AID-RCM537>3.0.CO;2-D

    CrossRef Google Scholar

    [39] Barber D J, Wenk H R. Microstructure in carbonates from the Alnø and Fen carbonatites[J]. Contributions to Mineralogy and Petrology, 1984, 88(3): 233-245. doi: 10.1007/BF00380168

    CrossRef Google Scholar

    [40] Hornig-Kjarsgaard I. Rare earth elements in Sövitic carbonatites and their mineral phases[J]. Journal of Petrology, 1998, 39(11-12): 2105-2121. doi: 10.1093/petroj/39.11-12.2105

    CrossRef Google Scholar

    [41] 李文军, 张青莲. 三种国际碳氧同位素参考物质的比较测定[J]. 化学通报, 1987(11): 33-34.

    Google Scholar

    Li W J, Zhang Q L. A comparative study on reference materials of carbon and oxygen isotopes[J]. Chemistry, 1987(11): 33-34.

    Google Scholar

    [42] Gonfiantini R, Stichler W, Rozanski K. Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurement[R]//Referenceand intercomparison materials for stable isotopes of light elements. Vienna: International Atomic Energy Agency (IAEA-TECDOC-825), 1995: 13-29.

    Google Scholar

    [43] Liu X, Deng W F, Wei G J. Carbon and oxygen isotopic analyses of calcite in calcite-dolomite mixtures: Optimization of selective acid extraction[J]. Rapid Communications in Mass Spectrometry, 2019, 33(5): 411-418. doi: 10.1002/rcm.8365

    CrossRef Google Scholar

    [44] Assonov S, Fajgelj A, Helie J F, et al. Characterisation of new reference materials IAEA-610, IAEA-611 and IAEA-612 aimed at the VPDB δ13C scale realisation with small uncertainty[J]. Rapid Communications in Mass Spectrometry, 2020, 35(7): e9014.

    Google Scholar

    [45] Assonov S. Summary and recommendations from the international atomic energy agency technical meeting on the development of stable isotope reference products (21-25 November 2016)[J]. Rapid Communications in Mass Spectrometry, 2018, 32(10): 827-830. doi: 10.1002/rcm.8102

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(2923) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint