Citation: | HU Zhi-zhong, YAN Xiong, WANG Kun-yang, WANG Guan, PAN Zhong-xi, DU Gu. Characteristics of Carbon and Oxygen Isotope Standard Materials of Carbonates and Their Effect on Isotope Analysis and Standard Preservation[J]. Rock and Mineral Analysis, 2021, 40(4): 476-490. doi: 10.15898/j.cnki.11-2131/td.202011150143 |
Carbon and oxygen isotopes in carbonates are commonly used in geology and climate studies. Reference materials for these isotopes are an important basis for analysis and data comparison. Understanding the differences in the characteristics of different standard materials is helpful for the selection and use of standards, improvement of heterogeneity, and establishment of optimal experimental conditions.
To investigate the influence of the characteristics of carbon and oxygen isotope standard materials of carbonates on isotope analysis and preservation of the standards.
In this study, X-ray diffraction (XRD), optical microscopy, and energy dispersive X-ray scanning electron microscopy (EDX-SEM) were used to analyze carbonate carbon and oxygen isotope reference materials with different properties, such as provenance, particle size, particle morphology and structure, and purity. The δ13C and δ18O values of some carbonate reference materials were determined by the continuous flow phosphoric acid method to explore their characteristics and their influence on isotope analysis and standard preservation.
Natural carbonate reference materials generally contain non-calcium carbonate components, such as small amounts of quartz and other particles with obvious differences in properties. There are also differences in particle size, morphology, microstructure, and mineral composition between different standard materials and between standard material particles. The δ13C and δ18O values of different standard materials were determined, and most results were consistent with the recommended values. The standard deviations of the δ13C and δ18O values of IAEA-CO-8 were larger than those of other standard materials, which is attributable to their complex composition and homogeneity. The standard deviation of the δ18O value of NBS20 was large, while the δ18O value of 7902 deviated from the recommended value. It is inferred that their powdery and fine particles are more likely to be affected by carbon dioxide and water in air.
Based on previous research as well as the current study, it is believed that under the recommended usage amount, the properties of natural carbonate reference materials have a limited impact on the accuracy of analysis. To ensure the accuracy of microanalysis and research, while selecting the standard and the particles in the standard, it is recommended to combine the characteristics of standards and materials based on the purpose of the analysis and research. At the same time, the preparation and storage of powdery and fine-grained standard materials require more attention. This study supplements information regarding the properties of carbonate carbon and oxygen isotope standard materials, which helps in the analysis and research of trace carbonate carbon and oxygen isotopes, and provides a reference for standard preservation and preparation.
[1] | 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000. Zheng Y F, Chen J F. Stable isotope geochemistry[M]. Beijing: Science Press, 2000. |
[2] | 严兆彬, 郭福生, 潘家永, 等. 碳酸盐岩C, O, Sr同位素组成在古气候、古海洋环境研究中的应用[J]. 地质找矿论丛, 2005, 20(1): 53-56. doi: 10.3969/j.issn.1001-1412.2005.01.010 Yan Z B, Guo F S, Pan J Y, et al. Application of C, O and Sr isotope composition of carbonates in the research of paleoclimate and paleooceanic environment[J]. Contributions to Geology and Mineral Resources Research, 2005, 20(1): 53-56. doi: 10.3969/j.issn.1001-1412.2005.01.010 |
[3] | Scobar J E, Curtis J H, Brenner M, et al. Isotope mea-surements of single ostracod values and gastropod shells for climates reconstruction: Evaluation of within-sample variability and determination of optimum sample size[J]. Journal of Palealimnology, 2010, 43: 921. doi: 10.1007/s10933-009-9377-9 |
[4] | Charlier B L A, Ginibre C, Morgan D, et al. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications[J]. Chemical Geology, 2006, 232(3): 113-114. |
[5] | 邓文峰, 韦刚健, 李献华. 不纯碳酸盐碳氧同位素组成的在线分析[J]. 地球化学, 2005, 34(5): 495-500. doi: 10.3321/j.issn:0379-1726.2005.05.007 Deng W F, Wei G J, Li X H. Online analysis of carbon and oxygen isotopic compositions of impure carbonate[J]. Geochimica, 2005, 34(5): 495-500. doi: 10.3321/j.issn:0379-1726.2005.05.007 |
[6] | 陶成, 把立强, 李广友, 等. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用[J]. 岩矿测试, 2006, 25(4): 334-336. doi: 10.3969/j.issn.0254-5357.2006.04.009 Tao C, Ba L Q, Li G Y, et al. Application of GasBench-IRMS in on-line continuous measurement of δ13C and δ18O in carbonate rock samples[J]. Rock and Mineral Analysis, 2006, 25(4): 334-336. doi: 10.3969/j.issn.0254-5357.2006.04.009 |
[7] | 杜广鹏, 王旭, 张福松. GasBenchⅡ顶空瓶内空气背景对 < 100μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探[J]. 岩矿测试, 2010, 29(6): 631-638. doi: 10.3969/j.issn.0254-5357.2010.06.001 Du G P, Wang X, Zhang F S. Influence of the air background in GasBenchⅡ vials on the measurements of C and O isotopes in carbonates and a preliminary study on blank correction strategy[J]. Rock and Mineral Analysis, 2010, 29(6): 631-638. doi: 10.3969/j.issn.0254-5357.2010.06.001 |
[8] | 朱园园, 邱海鸥, 杜永, 等. 应用GasBenchⅡ-IRMS优化碳氧同位素分析方法[J]. 岩矿测试, 2014, 33(6): 789-794. Zhu Y Y, Qiu H O, Du Y, et al. Evaluation and optimization of carbon and oxygen isotopes experimental conditions determinated by GasBenchⅡ-IRMS method[J]. Rock and Mineral Analysis, 2014, 33(6): 789-794. |
[9] | 梁翠翠, 尹希杰, 徐勇航, 等. GasBenchⅡ-IRMS测定微量碳酸盐中碳氧同位素比值方法研究[J]. 同位素, 2015, 28(1): 41-47. Liang C C, Yin X J, Xu Y H, et al. Analytical method for carbon and oxygen isotope of small carbonate samples with the GasBenchⅡ-IRMS devices[J]. Journal of Isotopes, 2015, 28(1): 41-47. |
[10] | Zha X P, Zhao Y Y, Zheng Y F. An online method combining a GasBenchⅡ with continuous flow isotope ratio mass spectrometry to determine the content and isotopic compositions of minor amounts of carbonate in silicate rocks[J]. Rapid Communications in Mass Spectrometry, 2010, 24(15): 2217-2226. doi: 10.1002/rcm.4632 |
[11] | Breitenbach S F M, Bernasconi S M. Carbon and oxygen isotope analysis of small carbonate samples (20 to 100μg) with a GasBenchⅡ preparation device[J]. Rapid Communications in Mass Spectrometry, 2011, 25(13): 1910-1914. doi: 10.1002/rcm.5052 |
[12] | 丁悌平. 稳定同位素测试技术与参考物质研究现状及发展趋势[J]. 岩矿测试, 2002, 21(4): 291-300. doi: 10.3969/j.issn.0254-5357.2002.04.011 Ding T P. Present status and prospect of analytical techniques and reference materials for stable isotopes[J]. Rock and Mineral Analysis, 2002, 21(4): 291-300. doi: 10.3969/j.issn.0254-5357.2002.04.011 |
[13] | Tang G Q, Li X H, Li Q L, et al. A new Chinese national reference material (GBW04481) for calcite oxygen and carbon isotopic microanalysis[J]. Surface and Interface Analysis, 2019, 52(5): 190-196. |
[14] | Ishimura T, Tsunogai U, Gamo T. Stable carbon and oxygen isotopic determination of sub-microgram quantities of CaCO3 to analyze individual foraminiferal shells[J]. Rapid Communications in Mass Spectrometry, 2004, 18(23): 2883-2888. doi: 10.1002/rcm.1701 |
[15] | Kimoto K, Ishimura T, Tsunogai U, et al. The living triserial planktic foraminifer Gallitelliavivans (Cushman): Distribution, stable isotopes, and paleoecological implications[J]. Marine Micropaleon-tology, 2009, 71(1): 71-79. |
[16] | Ishimura T, Tsunogai U, Hasegawa S, et al. Variation in stable carbon and oxygen isotopes of individual benthic for aminifera: Tracers for quantifying the magnitude of isotopic disequilibrium[J]. Biogeoences Discussions, 2012, 9(5): 6191-6218. |
[17] | Zha X P, Gong B, Zheng Y F, et al. Precise carbon isotopic ratio analyses of micro amounts of carbonate and non-carbonate in basalt using continuous-flow isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(1): 48-56. doi: 10.1002/rcm.8008 |
[18] | Brand W A, Coplen T B, Vogl J, et al. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report)[J]. Pure and Applied Chemistry, 2014, 86(3): 425-467. doi: 10.1515/pac-2013-1023 |
[19] | 郑淑蕙, 郑斯成, 莫志超. 稳定同位素地球化学分析[M]. 北京: 北京大学出版社, 1986: 402. Zheng S H, Zheng S C, Mo Z C. Stable isotope geochemical analysis[M]. Beijing: Peking University Press, 1986: 402. |
[20] | Lin Y, Feng L, Hao J, et al. Sintering nano-crystalline calcite: A new method of synthesizing homogeneous reference materials for SIMS analysis[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1686-1691. doi: 10.1039/C4JA00136B |
[21] | Helie J F, Hillaire-Marcel C, Groening M. Suitability of IAEA-603 as a replacement to NBS19 for small sample analysis[C]//Report to IAEA-Terrestrial Environment Laboratory. Montreal: GEOTOP-UQAM, 2013: 1-11. |
[22] | Assonov S, Groening M, Fajgelj A, et al. Preparation and characterization of IAEA-603, a new primary reference material aimed at the VPDB scale realisation for δ13C and δ18O determination[J]. Rapid Communications in Mass Spectrometry, 2020, 34(20): e8867. |
[23] | Helie J F, Hillaire-Marcel C. Designing working standards for stable H, C and O isotope measurements in CO2 and H2O[J]. Rapid Communications in Mass Spectrometry, 2021, 35(5): e9008. |
[24] | Assonov S, Gröning M, Fajgelj A. IAEA stable isotope reference materials: Addressing the needs of atmospheric greenhouse gas monitoring[C]//The 18th WMO/IAEA meeting on carbon dioxide, other greenhouse gases and related tracers measurement techniques (GGMT-2015). California: GAW Report No. 229: 76-80. |
[25] | Ishimura T, Tsunogai U, Nakagawa F. Grain-scale hete-rogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS19, NBS18, IAEA-CO-1, and IAEA-CO-8)[J]. Rapid Communications in Mass Spectrometry, 2008, 22(12): 1925-1932. doi: 10.1002/rcm.3571 |
[26] | Crowley S F. Mineralogical and chemical composition of international carbon and oxygen isotope calibration material NBS19, andreference materials NBS18, IAEA-CO-1 and IAEA-CO-8[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 193-206. doi: 10.1111/j.1751-908X.2010.00037.x |
[27] | Nishida K, Ishimura T. Grain-scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA-603[J]. Rapid Communications in Mass Spectrometry, 2017, 31(22): 1875-1880. doi: 10.1002/rcm.7966 |
[28] | 杨会, 唐伟, 吴夏, 等. KielⅣ-IRMS双路在线分析微量碳酸盐的碳氧同位素[J]. 岩矿测试, 2014, 33(4): 480-485. doi: 10.3969/j.issn.0254-5357.2014.04.004 Yang H, Tang W, Wu X, et al. Carbon and oxygen isotope analysis of trace carbonate by Kiel Ⅳ-IRMS using on-line dual technique[J]. Rock and Mineral Analysis, 2014, 33(4): 480-485. doi: 10.3969/j.issn.0254-5357.2014.04.004 |
[29] | Reference sheet for IAEA-603[R]. Vienna: International Atomic Energy Agency, 2016. |
[30] | Friedman I, O'Neil J, Cebula G. Two new carbonate stable isotope standards[J]. Geostandard Newsletter, 1982, 6(1): 11-12. doi: 10.1111/j.1751-908X.1982.tb00340.x |
[31] | Craig H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide[J]. Geochimica Et Cosmochimica Acta, 1957, 12(1-2): 133-149. doi: 10.1016/0016-7037(57)90024-8 |
[32] | 王凤玉, 胡志中, 杜谷. X射线衍射法在有机药物研究中的运用[J]. 资源开发与市场, 2014, 30(9): 1030-1031. doi: 10.3969/j.issn.1005-8141.2014.09.002 Wang F Y, Hu Z Z, Du G. Progresses on X-ray diffraction analysis in organic drug research[J]. Resource Development and Market, 2014, 30(9): 1030-1031. doi: 10.3969/j.issn.1005-8141.2014.09.002 |
[33] | 王坤阳, 杜谷, 杨玉杰, 等. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J]. 岩矿测试, 2014, 33(5): 634-639. doi: 10.3969/j.issn.0254-5357.2014.05.004 Wang K Y, Du G, Yang Y J, et al. Characteristics study of reservoirs pores and mineral compositions for black shale, northern Guizhou, by using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5): 634-639. doi: 10.3969/j.issn.0254-5357.2014.05.004 |
[34] | 张琳, 刘福亮, 贾艳琨, 等. 稳定同位素分析数据标准化校准方法的讨论[J]. 环境化学, 2011, 30(3): 727-728. Zhang L, Liu F L, Jia Y K, et al. Discussion on standardized calibration methods for stable isotope analysis date[J]. Environmental Chemistry, 2011, 30(3): 727-728. |
[35] | Paul D S G, Fórizs I. Normalization of measured stable isotopic com positions to isotope reference scales-A review[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18): 3006-3014. doi: 10.1002/rcm.3185 |
[36] | 于吉顺, 雷新荣, 张锦化, 等. 矿物X射线粉晶鉴定手册(图谱)[M]. 武汉: 华中科技大学出版社, 2011. Yu J S, Lei X R, Zhang J H, et al. Mineral X-ray powder identification manual[M]. Wuhan: Huazhong University of Science and Technology Press, 2011. |
[37] | 何道清. 激光微取样稳定同位素分析新技术[J]. 石油仪器, 1997, 11(5): 41-44. He D Q. The new technique of laser microsampling of isotopic analysis[J]. Petroleum Instruments, 1997, 11(5): 41-44. |
[38] | Ball J D, Crowley S F, Steele D F. Carbon and oxygen isotope ratio analysis of small carbonate samples by conventional phosphoric acid digestion: Sample preparation and calibration[J]. Rapid Communications in Mass Spectrometry, 1996, 10(8): 987-995. doi: 10.1002/(SICI)1097-0231(19960610)10:8<987::AID-RCM537>3.0.CO;2-D |
[39] | Barber D J, Wenk H R. Microstructure in carbonates from the Alnø and Fen carbonatites[J]. Contributions to Mineralogy and Petrology, 1984, 88(3): 233-245. doi: 10.1007/BF00380168 |
[40] | Hornig-Kjarsgaard I. Rare earth elements in Sövitic carbonatites and their mineral phases[J]. Journal of Petrology, 1998, 39(11-12): 2105-2121. doi: 10.1093/petroj/39.11-12.2105 |
[41] | 李文军, 张青莲. 三种国际碳氧同位素参考物质的比较测定[J]. 化学通报, 1987(11): 33-34. Li W J, Zhang Q L. A comparative study on reference materials of carbon and oxygen isotopes[J]. Chemistry, 1987(11): 33-34. |
[42] | Gonfiantini R, Stichler W, Rozanski K. Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurement[R]//Referenceand intercomparison materials for stable isotopes of light elements. Vienna: International Atomic Energy Agency (IAEA-TECDOC-825), 1995: 13-29. |
[43] | Liu X, Deng W F, Wei G J. Carbon and oxygen isotopic analyses of calcite in calcite-dolomite mixtures: Optimization of selective acid extraction[J]. Rapid Communications in Mass Spectrometry, 2019, 33(5): 411-418. doi: 10.1002/rcm.8365 |
[44] | Assonov S, Fajgelj A, Helie J F, et al. Characterisation of new reference materials IAEA-610, IAEA-611 and IAEA-612 aimed at the VPDB δ13C scale realisation with small uncertainty[J]. Rapid Communications in Mass Spectrometry, 2020, 35(7): e9014. |
[45] | Assonov S. Summary and recommendations from the international atomic energy agency technical meeting on the development of stable isotope reference products (21-25 November 2016)[J]. Rapid Communications in Mass Spectrometry, 2018, 32(10): 827-830. doi: 10.1002/rcm.8102 |
X-ray diffraction patterns for standard and reference materials
Photomicrographs of reference materials
SEM photographs of grains from reference material NBS19
SEM photographs of grains from reference material IAEA-603
SEM photographs of grains from reference material NBS18
SEM photographs of grains from reference material IAEA-CO-8
SEM photographs of grains from reference materials GBW04405 and TTB-1
SEM photographs of grains from reference material NBS20
SEM photographs of grains from reference material 811
SEM photographs of grains from reference materials 7901 and 7902