Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

HE Jia-le, GONG Ting-ting, PAN Zhong-xi, DU Gu. Raman Imaging Analysis Method of Fine Minerals in Rock Ore[J]. Rock and Mineral Analysis, 2021, 40(4): 491-503. doi: 10.15898/j.cnki.11-2131/td.202103080036
Citation: HE Jia-le, GONG Ting-ting, PAN Zhong-xi, DU Gu. Raman Imaging Analysis Method of Fine Minerals in Rock Ore[J]. Rock and Mineral Analysis, 2021, 40(4): 491-503. doi: 10.15898/j.cnki.11-2131/td.202103080036

Raman Imaging Analysis Method of Fine Minerals in Rock Ore

More Information
  • BACKGROUND

    Mineral identification is the basis of all types of geological work, and its appraisal level and quality directly affect the depth and degree of research of a study. Conventional identification methods are significantly influenced by experience level, optical microscope resolution, and other factors. It is difficult to accurately identify fine rare minerals and clay minerals that need to be studied. Additionally, most of the technical methods relying on high-precision large-scale instruments have special requirements for sample preparation, which is not conducive to the reuse of the samples. It is also inconvenient to explore and observe specific fine transparent minerals under high multiple reflected lights, such as scanning electron microscopy and electron microprobe.

    OBJECTIVES

    To develop a more rapid and accurate method for identifying fine minerals.

    METHODS

    The laser Raman high-resolution large-area fast imaging method (StreamLineHR) was applied to the whole-area large-area scanning spectrum of two standard rock slices.

    RESULTS

    The transparent minerals were identified as alkali feldspar, plagioclase, quartz, amphibole, biotite, calcite, sphene, apatite, zircon, and epidote. The opaque mineral was identified as magnetite. Some of the minerals were closely associated (e.g., quartz and feldspar as well as sphene and hornblende), and some minerals showed secondary alterations (e.g., feldspar was transformed to calcite). Based on the content statistics, the two thin sections were named fine-grained amphibolite monzonite and fine-grained biotite plagioclase amphibolite.

    CONCLUSIONS

    Experimental results showed that this method was more accurate than the conventional methods used for the identification of fine minerals with very low content. However, the interference caused by the fluorescence effect, similarity in peak positions of similar minerals (feldspar, amphibole), and shift of the peak position of altered minerals during mineral identification and spectral fitting were solved by combining the optical characteristics under the mineral objective lens when necessary. In addition, the smaller the setting of the surface sweep step size, the more accurate the analysis, and the time cost correspondingly increased. This method realized the rapid identification of fine minerals over a large range, which was convenient, intuitive, and accurate. It compensated for the shortcomings of conventional rock and ore identification and other technical methods and expanded the application scope of Raman spectroscopy in geological studies.

  • 加载中
  • [1] 贾福东, 张长青, 化志新, 等. 云南麻花坪钨铍矿床蓝柱石的鉴定特征及成分与成因分析[J]. 光谱学与光谱分析, 2020, 40(10): 3185-3192.

    Google Scholar

    Jia F D, Zhang C Q, Hua Z X, et al. Identification characteristics, composition and genesis of euclase in Mahuaping tungsten-beryllium polymetallic deposit in Yunnan Province, southwest China[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3185-3192.

    Google Scholar

    [2] 秦亚超, 孙荣涛, 王红, 等. 南黄海西部日照海域海侵沉积地层及其古环境意义[J]. 沉积学报, 2020, 38(4): 790-809.

    Google Scholar

    Qin Y C, Sun R T, Wang H, et al. Transgressive succession offshore rizhao in western South Yellow Sea and paleo-environmental implications[J]. Acta Sedimentologica Sinica, 2020, 38(4): 790-809.

    Google Scholar

    [3] 冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85.

    Google Scholar

    Feng Z H, Liu B, Shao H M, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong Area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85.

    Google Scholar

    [4] Tian T, Wu H, Kong F F. Fine-grained lithofacies types and sedimentary evolution characteristics of the Lower Es3 to the Upper Es4 of the Eocene Shahejie Formation in Jiyang Depression[J]. International Core Journal of Engineering, 2021, 7(5): 147-160.

    Google Scholar

    [5] 杨富成, 李文昌, 祝向平, 等. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究[J]. 地学前缘, 2020, 27(4): 232-243.

    Google Scholar

    Yang F C, Li W C, Zhu X P, et al. Geological characteristics and prospecting of the Bada Cu-Au deposit in Mangkang County, East Tibet[J]. Earth Science Frontiers, 2020, 27(4): 232-243.

    Google Scholar

    [6] 张殿伟, 郝运轻, 张荣强, 等. 四川盆地湄潭组生烃潜力分析及勘探意义[J]. 沉积学报, 2020, 38(3): 635-647.

    Google Scholar

    Zhang D W, Hao Y Q, Zhang R Q, et al. Hydrocarbon potential analysis and exploration significance of the Meitan Formation, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 635-647.

    Google Scholar

    [7] 文博杰, 陈毓川, 王高尚, 等. 2035年中国能源与矿产资源需求展望[J]. 中国工程科学, 2019, 21(1): 68-73.

    Google Scholar

    Wen B J, Chen Y C, Wang G S, et al. China's demand for energy and mineral resources by 2035[J]. Strategic Study of CAE, 2019, 21(1): 68-73.

    Google Scholar

    [8] 王焰新. "同一健康"视角下医学地质学的创新发展[J]. 地球科学, 2020, 45(4): 1093-1102.

    Google Scholar

    Wang Y X. Innovative development of medical geology: A one health perspective[J]. Earth Science, 2020, 45(4): 1093-1102.

    Google Scholar

    [9] Chen H W, Lin S G, Li Z G, et al. Comparing arsenic(Ⅴ) adsorption by two types of red soil weathered from granite and sandstone in Hunan, China[J]. Environmental Earth Sciences, 2021, 80(10): 376-387. doi: 10.1007/s12665-021-09683-7

    CrossRef Google Scholar

    [10] Kirsten M, Mikutta R, Vogel C, et al. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics[J]. Scientific Reports, 2021, 11(1): 5076-5088. doi: 10.1038/s41598-021-84777-7

    CrossRef Google Scholar

    [11] 朱强, 李建国, 苗培森, 等. 鄂尔多斯盆地镇原地区洛河组黏土矿物特征及找铀意义[J]. 大地构造与成矿学, 2020, 44(4): 619-632.

    Google Scholar

    Zhu Q, Li J G, Miao P S, et al. Characteristics of clay minerals in the Luohe Formation in Zhenyuan Area, Ordos Basin, and its uranium prospecting significance[J]. Geotectonica Et Metallogenia, 2020, 44(4): 619-632.

    Google Scholar

    [12] 李光柱, 李梅, 肖赫, 等. 不同粒度下微山稀土矿物颗粒赋存研究[J]. 有色金属(选矿部分), 2021(1): 1-5.

    Google Scholar

    Li G Z, Li M, Xiao H, et al. Study on the occurrence of rare earth mineral particles in Weishan with different particle sizes[J]. Nonferrous Metals (Mineral Processing Section), 2021(1): 1-5.

    Google Scholar

    [13] 李余亮. 岩矿鉴定存在的问题与改进方式分析[J]. 冶金管理, 2020(13): 17-18.

    Google Scholar

    Li Y L. Problems of rock ore appraisal and improvement way analysis[J]. Metallurgical Industry Management, 2020(13): 17-18.

    Google Scholar

    [14] Coblinski J A, Inda A V, Demattê J A M, et al. Identification of minerals in subtropical soils with different textural classes by Vis-NIR-SWIR reflectance spectroscopy[J]. Catena, 2021, 203: 105334. doi: 10.1016/j.catena.2021.105334

    CrossRef Google Scholar

    [15] 何佳乐, 潘忠习, 冉敬. 激光拉曼光谱在岩矿鉴定中的应用[J]. 四川地质学报, 2016, 36(2): 346-349. doi: 10.3969/j.issn.1006-0995.2016.02.040

    CrossRef Google Scholar

    He J L, Pan Z X, Ran J. The application of laser Raman spectroscopy to rock and mineral identification[J]. Acta Geologica Sichuan, 2016, 36(2): 346-349. doi: 10.3969/j.issn.1006-0995.2016.02.040

    CrossRef Google Scholar

    [16] 李映葵, 曹建劲, 吴政权, 等. 内蒙古扎木敖包铁、石墨矿床钻孔样品的NIR和XRD分析[J]. 光谱学与光谱分析, 2015, 35(1): 83-88. doi: 10.3964/j.issn.1000-0593(2015)01-0083-06

    CrossRef Google Scholar

    Li Y K, Chao J J, Wu Z Q, et al. NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 83-88. doi: 10.3964/j.issn.1000-0593(2015)01-0083-06

    CrossRef Google Scholar

    [17] 迟广成, 殷晓, 伍月, 等. 扫描电镜/能谱仪用于变质岩中榍石的鉴定[J]. 冶金分析, 2016, 36(4): 11-16.

    Google Scholar

    Chi G C, Yin X, Wu Y, et al. Application of scanning electron microscope/energy dispersive spectrometer in the identification of sphene in metamorphic rock[J]. Metallurgical Analysis, 2016, 36(4): 11-16.

    Google Scholar

    [18] 张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61-73.

    Google Scholar

    Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61-73.

    Google Scholar

    [19] 张贵山, 彭仁, 邱红信. 扫描仪在岩矿鉴定与岩相学研究中的应用——薄片扫描法[J]. 矿物学报, 2020, 40(1): 1-8.

    Google Scholar

    Zhang G S, Peng R, Qiu H X. Application of scanner for the rock-mineral identification and petrography——Thin section scanning method[J]. Acta Mineralogica Sinica, 2020, 40(1): 1-8.

    Google Scholar

    [20] 魏广超, 尤静林, 马楠, 等. 链状硅酸盐矿物的拉曼光谱研究[J]. 光散射学报, 2017, 29(1): 62-69.

    Google Scholar

    Wei G C, You J L, Ma L, et al. Raman spectroscopic study of the chain silicate minerals[J]. The Journal of Light Scattering, 2017, 29(1): 62-69.

    Google Scholar

    [21] 付宛璐, 袁学银. 镁对方解石相变压力和拉曼光谱影响的实验研究[J]. 光谱学与光谱分析, 2019, 39(7): 2053-2058.

    Google Scholar

    Fu W L, Yuan X Y. Study on the influence of magnesium on the phase transition pressures and Raman vibrations of calcite[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2053-2058.

    Google Scholar

    [22] 何佳乐, 潘忠习, 冉敬. 激光拉曼光谱法在单个流体包裹体研究中的应用进展[J]. 岩矿测试, 2015, 34(4): 383-391.

    Google Scholar

    He J L, Pan Z X, Ran J. Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J]. Rock and Mineral Analysis, 2015, 34(4): 383-391.

    Google Scholar

    [23] 宋彦军, 李甘雨, 张健, 等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试, 2020, 39(5): 709-719.

    Google Scholar

    Song Y J, Li G Y, Zhang J, et al. Mineralogical characteristics and coloration mechanism of yellow-green alunite jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719.

    Google Scholar

    [24] Kouketsu Y, Mizukami T, Mori H, et al. A new approach to develop the Raman carbonaceous material geother-mometer for low-grade metamorphism using peak width[J]. Island Arc, 2014, 23(1): 33-50. doi: 10.1111/iar.12057

    CrossRef Google Scholar

    [25] 张聪, 夏响华, 杨玉茹, 等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试, 2019, 38(1): 26-34.

    Google Scholar

    Zhang C, Xia X H, Yang Y R, et al. Raman spectrum characteristics of organic matter in Silurian Longmaxi Forma-tion shale of well Anye-1 and its geological signific-ance[J]. Rock and Mineral Analysis, 2019, 38(1): 26-34.

    Google Scholar

    [26] Zhang S Y, Chen H, Li R Y, et al. Raman spectroscopy and mapping technique for the identification of expired drugs[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 224: 1386-1425.

    Google Scholar

    [27] 刘丹童, 宋洋, 李菲菲, 等. 基于显微拉曼面扫的小尺寸微塑料检测方法[J]. 中国环境科学, 2020, 40(10): 4429-4438. doi: 10.3969/j.issn.1000-6923.2020.10.029

    CrossRef Google Scholar

    Liu D T, Song Y, Li F F, et al. A detection method of small-sized microplastics based on micro-Raman mapping[J]. China Environmental Science, 2020, 40(10): 4429-4438. doi: 10.3969/j.issn.1000-6923.2020.10.029

    CrossRef Google Scholar

    [28] 崔楠楠, 杜增丰, 张鑫, 等. 共聚焦拉曼光谱在贻贝介壳探测中的应用[J]. 光谱学与光谱分析, 2020, 40(3): 750-754.

    Google Scholar

    Cui N N, Du Z F, Zhang X, et al. The application of confocal Raman spectroscopy in mussels shell[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 750-754.

    Google Scholar

    [29] Fernando P A, Niels H, Philippe M. High spatial resolution Raman mapping of complex mineral assemblages: Application on phosphate mineral sequences in pegmatites[J]. Journal of Raman Spectroscopy, 2020, 52(3): 690-708.

    Google Scholar

    [30] Chu H X, Chi G X, Xue C J. Quantification of solute composition in H2O-NaCl-CaCl2 solutions using cryogenic 2D Raman mapping[J]. Minerals, 2020, 10(11): 1043. doi: 10.3390/min10111043

    CrossRef Google Scholar

    [31] Burke E A J. Raman microspectrometry of fluid inclusions[J]. Lithos, 2001, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8

    CrossRef Google Scholar

    [32] 常丽华, 陈曼云, 金巍, 等. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2006.

    Google Scholar

    Chang L H, Chen M Y, Jin W, et al. Handbook for the identification of transparent mineral flakes[M]. Beijing: Geological Publishing House, 2006.

    Google Scholar

    [33] 谢俊. 铝硅酸盐精细结构及长石的拉曼光谱研究[D]. 北京: 中国地质大学(北京), 2008.

    Google Scholar

    Xie J. A Raman spectroscopy study of hyperfine structure of aluminosilicate and feldspar[D]. Beijing: China University of Geosciences(Beijing), 2008.

    Google Scholar

    [34] 韩景仪, 郭立鹤, 陈伟. 矿物拉曼光谱图集[M]. 北京: 地质出版社, 2016: 147-151.

    Google Scholar

    Han J Y, Guo L H, Chen W. Raman spectral atlas of minerals[M]. Beijing: Geological Publishing House, 2016: 147-151.

    Google Scholar

    [35] 刘伟. 碱性长石在次固相下的微组构重组织: 碱性长石流体相互作用[J]. 地学前缘, 2001, 8(4): 391-397. doi: 10.3321/j.issn:1005-2321.2001.04.020

    CrossRef Google Scholar

    Liu W. Microtextural reorganization of alkali feldspar during deuteric alteration: Alkali feldspar-fluid interaction[J]. Earth Science Frontiers, 2001, 8(4): 391-397. doi: 10.3321/j.issn:1005-2321.2001.04.020

    CrossRef Google Scholar

    [36] Lazarev A N, Tenisheva T F. The vibration spectra and structures of some rare earth element silicates[J]. Russian Chemical Bulletin, 1961, 10(6): 894-901. doi: 10.1007/BF00909154

    CrossRef Google Scholar

    [37] Blaha J J, Rosasco G J. Raman microprobe spectra of individual microcrystals and fibers of talc, tremolite, and related silicate minerals[J]. Analytical Chemistry, 1978, 50(7): 892-896. doi: 10.1021/ac50029a018

    CrossRef Google Scholar

    [38] Wang A, Dhamelincourt P, Turrell G. Raman micro-spectroscopic study of the cation distribution in amphiboles[J]. Applied Spectroscopy, 1988, 42(8): 1441-1450. doi: 10.1366/0003702884429490

    CrossRef Google Scholar

    [39] 黄恩萍. 角闪石类矿物之拉曼光谱研究[D]. 台北: 国立成功大学, 2003.

    Google Scholar

    Huang E P. Raman spectroscopic study of amphiboles[D]. Taipei: National Cheng Gung University, 2003.

    Google Scholar

    [40] 代路路, 姜炎, 杨明星. "黑青""黑碧"的谱学鉴别特征探究[J]. 光谱学与光谱分析, 2021, 41(1): 292-298.

    Google Scholar

    Dai L L, Jiang Y, Yang M X. Study on the spectral identification characteristics of "Heiqing" and "Heibi"[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 292-298.

    Google Scholar

    [41] Frezzotti M L, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112: 1-20. doi: 10.1016/j.gexplo.2011.09.009

    CrossRef Google Scholar

    [42] 沈昆, 舒磊, 刘鹏瑞, 等. 山东邹平王家庄铜(钼)矿床蚀变围岩中含云母流体包裹体的成因及其意义[J]. 岩石学报, 2018, 34(12): 3509-3524.

    Google Scholar

    Shen K, Shu L, Liu P R, et al. Origin and significance of mica-bearing fluid inclusions in the altered wallrocks of the Wangjiazhuang copper-molybdenum deposit, Zouping County, Shandong Province[J]. Acta Petrologica Sinica, 2018, 34(12): 3509-3524.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(4498) PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint