Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095
Citation: YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095

Review on Characteristics of Selenium in Soil and Related Analytical Techniques

  • BACKGROUND

    Selenium is an essential micronutrient for humans. The spatial heterogeneity of selenium in soil is the main cause of various diseases and environmental problems. Selenium in soil is unevenly distributed across the globe, with most soils being low in selenium. Globally, the average selenium content in soil is 0.4mg/kg, while it is 346-2018mg/kg in typical high-selenium areas. Thus, accurate analysis of selenium in soil is of great significance in research on seleniferous soil. The reasonable use of reference materials can aid in the effective monitoring of the quality of analysis.

    OBJECTIVES

    To summarize the status of research on selenium in soil, and the development of the corresponding analytical methods and reference materials.

    METHODS

    This article describes the distribution characteristics, speciation, and migration and transformation characteristics of selenium in soil. Furthermore, the methods for extracting selenium speciation in soil, the progress of research on selenium content analysis technology, and the status of the development of soil selenium reference materials in recent years are summarized.

    RESULTS

    Because of limited advancements in the development of analytical techniques, research on the mechanism of migration and transformation is still incomplete. The emergence of sequential extraction techniques provides a new way to study the distribution, migration, and transformation of soil selenium speciation. However, this method is still under development and has many shortcomings, such as inadequate selectivity and inevitable speciation transformation. Atomic fluorescence spectroscopy is the mainstream approach for the analysis of selenium content in soil, especially in China. Mass spectrometry, with high precision and a low detection limit, and synchrotron radiation X-ray technology, with in-situ speciation analysis capabilities, offer significant advantages in the analysis of trace and ultra-trace elements and speciation analysis. There is a significant gap in the research on reference materials with gradient content and certified speciation content.

    CONCLUSIONS

    Methods with a low detection limit, high sensitivity, and matrix interference resistance are urgently needed. The combined application of sequential extraction, mass spectrometry, and X-ray fluorescence can promote research on selenium in soil. Moreover, related certified reference materials with gradient content and certified speciation content are in short supply.

  • 加载中
  • [1] Banning H, Stelling M, Konig S, et al. Preparation and purification of organic samples for selenium isotope studies[J]. PLoS ONE, 2018, 13(3): 1-19.

    Google Scholar

    [2] Ali J, Tuzen M, Feng X, et al. Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques[J]. Food Chemistry, 2021, 344: 1-7.

    Google Scholar

    [3] Araujo A M, Lessa J H D L, Lima F R D D, et al. Adsorption of selenite in tropical soils as affected by soil management, ionic strength, and soil properties[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 139-148. doi: 10.1007/s42729-019-00107-x

    CrossRef Google Scholar

    [4] Mansur E T, Barnes S-J, Savard D, et al. Determination of Te, As, Bi, Sb and Se (TABS) in geological reference materials and GeoPT proficiency test materials by hydride generation-atomic fluorescence spectrometry (HF-AFS)[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 147-167. doi: 10.1111/ggr.12289

    CrossRef Google Scholar

    [5] Etteieb S, Magdouli S, Zolfaghari M, et al. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review[J]. Science of The Total Environment, 2020, 698: 1-14.

    Google Scholar

    [6] Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J]. Science of The Total Environment, 2018, 645: 1522-1553. doi: 10.1016/j.scitotenv.2018.07.103

    CrossRef Google Scholar

    [7] Wen H, Carignan J. Reviews on atmospheric selenium: Emissions, speciation and fate[J]. Atmospheric Environment, 2007, 41(34): 7151-7165. doi: 10.1016/j.atmosenv.2007.07.035

    CrossRef Google Scholar

    [8] Liu Y, Tian X, Liu R, et al. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China[J]. Catena, 2021, 196: 1-12.

    Google Scholar

    [9] Wadgaonkar S L, Nancharaiah Y V, Esposito G, et al. Environmental impact and bioremediation of seleniferous soils and sediments[J]. Critical Reviews in Biotechnology, 2018, 38(6): 941-956. doi: 10.1080/07388551.2017.1420623

    CrossRef Google Scholar

    [10] Wang Q Q, Yu S C, Xu C D, et al. Association between selenium in soil and diabetes in Chinese residents aged 35-74 years: Results from the 2010 national survey of chronic diseases and behavioral risk factors surveillance[J]. Biomedical and Environmental Sciences, 2020, 33(4): 260-268.

    Google Scholar

    [11] Xiao K, Tang J, Chen H, et al. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a Karst area of southwest China[J]. Science of The Total Environment, 2020, 708: 1-8.

    Google Scholar

    [12] 秦海波, 朱建明. 中国典型高硒区硒的环境地球化学研究进展[J]. 生物技术进展, 2017, 7(5): 367-373.

    Google Scholar

    Qin H B, Zhu J M. Progress on environmental geochemistry of selenium in typical high-Se areas in China[J]. Current Biotechnology, 2017, 7(5): 367-373.

    Google Scholar

    [13] Winkel L H E, Vriens B, Jones G D, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review[J]. Nutrients, 2015, 7(6): 4199-4239. doi: 10.3390/nu7064199

    CrossRef Google Scholar

    [14] Floor G H, Román-Ross G. Selenium in volcanic environments: A review[J]. Applied Geochemistry, 2012, 27(3): 517-531. doi: 10.1016/j.apgeochem.2011.11.010

    CrossRef Google Scholar

    [15] Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 81-110. doi: 10.1007/s11157-009-9145-3

    CrossRef Google Scholar

    [16] Statwick J, Sher A A. Selenium in soils of western Colorado[J]. Journal of Arid Environments, 2017, 137: 1-6. doi: 10.1016/j.jaridenv.2016.10.006

    CrossRef Google Scholar

    [17] Armstrong J G T, Parnell J, Bullock L A, et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in West Ireland[J]. Applied Geochemistry, 2019, 109: 1-13.

    Google Scholar

    [18] Parnell J, Brolly C, Spinks S, et al. Selenium enrichment in Carboniferous shales, Britain and Ireland: Problem or opportunity for shale gas extraction?[J]. Applied Geochemistry, 2016, 66: 82-87. doi: 10.1016/j.apgeochem.2015.12.008

    CrossRef Google Scholar

    [19] Tuttle M L W, Fahy J W, Elliott J G, et al. Contaminants from cretaceous black shale: Ⅱ. Effect of geology, weathering, climate, and land use on salinity and selenium cycling, Mancos Shale landscapes, southwestern United States[J]. Applied Geochemistry, 2014, 46: 72-84. doi: 10.1016/j.apgeochem.2013.12.011

    CrossRef Google Scholar

    [20] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336.

    Google Scholar

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336.

    Google Scholar

    [21] Pilon-Smits E, Winkel L, Lin Z Q, Selenium in plants, Cham: Springer International Publishing, 2017.

    Google Scholar

    [22] 谈加香, 冯朝军, 耿丽婵. 氢化物发生-原子荧光光谱法测定土壤中水溶性硒含量[J]. 化工管理, 2017(22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

    CrossRef Google Scholar

    Tan J X, Feng C J, Geng L C. Determination of water-soluble selenium in soil by hydride generation-atomic fluorescence spectrometry[J]. Chemical Management, 2017(22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

    CrossRef Google Scholar

    [23] Dinh Q T, Cui Z, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

    CrossRef Google Scholar

    [24] He K Q, Yuan C G, Shi M D, et al. Accelerated scre-ening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance[J]. Ecotoxicology and Environmental Safety, 2020, 187: 1-8.

    Google Scholar

    [25] Gebreeyessus G D, Zewge F. A review on environmental selenium issues[J]. SN Applied Sciences, 2018, 1(1): 55-74.

    Google Scholar

    [26] Myers T. Remediation scenarios for selenium contamination, blackfoot watershed, southeast Idaho, USA[J]. Hydrogeology Journal, 2013, 21(3): 655-671. doi: 10.1007/s10040-013-0953-8

    CrossRef Google Scholar

    [27] Bajaj M, Eiche E, Neumann T, et al. Hazardous con-centrations of selenium in soil and groundwater in North-West India[J]. Journal of Hazardous Materials, 2011, 189(3): 640-646. doi: 10.1016/j.jhazmat.2011.01.086

    CrossRef Google Scholar

    [28] Cao S, Duan X, Zhao X, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J]. Science of The Total Environment, 2014, 472: 1001-1009. doi: 10.1016/j.scitotenv.2013.11.124

    CrossRef Google Scholar

    [29] LeBlanc K L, Kumkrong P, Mercier P H J, et al. Selenium analysis in waters. Part 2: Speciation methods[J]. Science of The Total Environment, 2018, 640-641: 1635-1651. doi: 10.1016/j.scitotenv.2018.05.394

    CrossRef Google Scholar

    [30] Bailey R T. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health[J]. Hydrogeology Journal, 2017, 25: 1191-1217. doi: 10.1007/s10040-016-1506-8

    CrossRef Google Scholar

    [31] Vinceti M, Crespi C M, Bonvicini F, et al. The need for a reassessment of the safe upper limit of selenium in drinking water[J]. Science of The Total Environment, 2013, 443: 633-642. doi: 10.1016/j.scitotenv.2012.11.025

    CrossRef Google Scholar

    [32] Xu Y, Li Y, Li H, et al. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China[J]. Science of The Total Environment, 2018, 633: 240-248. doi: 10.1016/j.scitotenv.2018.03.190

    CrossRef Google Scholar

    [33] Smažíková P, Praus L, Száková J, et al. Effects of organic matter-rich amendments on selenium mobility in soils[J]. Pedosphere, 2019, 29(6): 740-751. doi: 10.1016/S1002-0160(17)60444-2

    CrossRef Google Scholar

    [34] Ma B, Fernandez-Martinez A, Grangeon S, et al. Selenite uptake by Ca-Al LDH: A description of intercalated anion coordination geometries[J]. Environmental Science & Technology, 2018, 52(3): 1624-1632.

    Google Scholar

    [35] Ullah H, Liu G, Yousaf B, et al. A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives[J]. Environmental Geochemistry and Health, 2019, 41(2): 1003-1035. doi: 10.1007/s10653-018-0195-8

    CrossRef Google Scholar

    [36] Fan J, Zeng Y, Sun J. The transformation and migration of selenium in soil under different Eh conditions[J]. Journal of Soils and Sediments, 2018, 18(9): 2935-2947. doi: 10.1007/s11368-018-1980-9

    CrossRef Google Scholar

    [37] Kopittke P M, Wang P, Lombi E, et al. Synchrotron-based X-ray approaches for examining toxic trace metal(loid)s in soil-plant systems[J]. Journal of Environmental Quality, 2017, 46(6): 1175-1189. doi: 10.2134/jeq2016.09.0361

    CrossRef Google Scholar

    [38] Reynolds R J B, Jones R R, Heiner J, et al. Effects of selenium hyperaccumulators on soil selenium distribution and vegetation properties[J]. American Journal of Botany, 2020, 107(7): 970-982. doi: 10.1002/ajb2.1500

    CrossRef Google Scholar

    [39] Tan L C, Nancharaiah Y V, van Hullebusch E D, et al. Selenium: Environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886-907. doi: 10.1016/j.biotechadv.2016.05.005

    CrossRef Google Scholar

    [40] Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J]. Chemosphere, 2017, 180: 553-563. doi: 10.1016/j.chemosphere.2017.04.054

    CrossRef Google Scholar

    [41] Natasha, Shahid M, Niazi N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J]. Environmental Pollution, 2018, 234: 915-934. doi: 10.1016/j.envpol.2017.12.019

    CrossRef Google Scholar

    [42] Tessier A P, Campbell P G C, Bisson M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

    CrossRef Google Scholar

    [43] Fernández-Ondoño E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172: 133-141. doi: 10.1016/j.gexplo.2016.09.013

    CrossRef Google Scholar

    [44] Shaheen S M, Ali R A, Abowaly M E, et al. Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques[J]. Journal of Geochemical Exploration, 2018, 191: 28-42. doi: 10.1016/j.gexplo.2018.05.003

    CrossRef Google Scholar

    [45] 王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

    CrossRef Google Scholar

    Wang Y P, Huang Y, Wang S M, et al. Chemical speciation of elements in sediments and soil and their sequential extraction process[J]. Geological Bulletin of China, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

    CrossRef Google Scholar

    [46] Fan J, Zhao G, Sun J, et al. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation[J]. Science of The Total Environment, 2019, 684: 476-485. doi: 10.1016/j.scitotenv.2019.05.246

    CrossRef Google Scholar

    [47] Qin H B, Zhu J M, Lin Z Q, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J]. Environmental Pollution, 2017, 225: 361-369. doi: 10.1016/j.envpol.2017.02.062

    CrossRef Google Scholar

    [48] 唐沫岚, 鲍征宇, 范博伦, 等. 顺序提取分离-氢化物发生-原子荧光光谱法测定富硒土壤中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(4): 408-412.

    Google Scholar

    Tang M L, Bao Z Y, Fan B L, et al. HG-AFS speciation analysis for 5 species of selenium in Se-rich soil with separation by sequential extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 408-412.

    Google Scholar

    [49] Wang D, Dinh Q T, Thu T T A, et al. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J]. Chemosphere, 2018, 199: 417-426. doi: 10.1016/j.chemosphere.2018.02.007

    CrossRef Google Scholar

    [50] Favorito J E, Luxton T P, Eick M J, et al. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS[J]. Environmental Pollution, 2017, 229: 911-921. doi: 10.1016/j.envpol.2017.07.071

    CrossRef Google Scholar

    [51] Wang M, Cui Z, Xue M, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L. ) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J]. Science of The Total Environment, 2019, 689: 1-9. doi: 10.1016/j.scitotenv.2019.06.346

    CrossRef Google Scholar

    [52] 秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670.

    Google Scholar

    Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670.

    Google Scholar

    [53] Dodd J, Large D J, Fortey N J, et al. A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud[J]. Environmental Geochemistry & Health, 2000, 22(4): 281-296.

    Google Scholar

    [54] Shaltout A A, Castilho I N B, Welz B, et al. Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry[J]. Talanta, 2011, 85(3): 1350-1356. doi: 10.1016/j.talanta.2011.06.015

    CrossRef Google Scholar

    [55] Busheina I S, Abobaker M M, Aljurmi E S, et al. Determination of selenium in environmental samples using hydride generation coupled to atomic absorption spectroscopy[J]. Journal of Environmental Analytical Chemistry, 2016, 3(2): 1-5.

    Google Scholar

    [56] Schneider M, Pereira É R, Castilho I N B, et al. A simple sample preparation procedure for the fast screening of selenium species in soil samples using alkaline extraction and hydride-generation graphite furnace atomic absorption spectrometry[J]. Microchemical Journal, 2016, 125: 50-55. doi: 10.1016/j.microc.2015.10.018

    CrossRef Google Scholar

    [57] Carvalho G S, Oliveira J R, Curi N, et al. Selenium and mercury in Brazilian Cerrado soils and their relationships with physical and chemical soil characteristics[J]. Chemosphere, 2019, 218: 412-415. doi: 10.1016/j.chemosphere.2018.11.099

    CrossRef Google Scholar

    [58] 韩亚, 郭伟, 汪洪. 电感耦合等离子体质谱(ICP-MS)法与氢化物发生-原子吸收光谱(HG-AAS)法测定土壤中硒含量的对比研究[J]. 中国无机分析化学, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

    CrossRef Google Scholar

    Han Y, Guo W, Wang H. Method comparison for determination of selenium in soil by ICP-MS and HG-AAS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

    CrossRef Google Scholar

    [59] Castilho I N B, Pereira É R, Welz B, et al. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis[J]. Analytical Methods, 2014, 6(9): 2870-2875. doi: 10.1039/C3AY42227E

    CrossRef Google Scholar

    [60] Lessa J H L, Araujo A M, Silva G N T, et al. Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J]. Chemosphere, 2016, 164: 271-277. doi: 10.1016/j.chemosphere.2016.08.106

    CrossRef Google Scholar

    [61] 钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221.

    Google Scholar

    Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soil by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221.

    Google Scholar

    [62] 李美秀, 齐少华. 微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J]. 化学分析计量, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

    CrossRef Google Scholar

    Li M X, Qi S H. Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

    CrossRef Google Scholar

    [63] 温晓华, 邵超英, 张琢, 等. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J]. 岩矿测试, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

    CrossRef Google Scholar

    Wen X H, Shao C Y, Zhang Z, et al. Determination of trace arsenic, antimony, selenium in soil samples by hydride generation-atomic fluorescence spectrometry with slurry sample introduction[J]. Rock and Mineral Analysis, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

    CrossRef Google Scholar

    [64] 赵宗生, 赵小学, 姜晓旭, 等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试, 2019, 38(3): 333-340.

    Google Scholar

    Zhao Z S, Zhao X X, Jiang X X, et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340.

    Google Scholar

    [65] Zhou F, Li Y, Ma Y, et al. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods[J]. Science of The Total Environment, 2020, 762: 1-10.

    Google Scholar

    [66] Bullock L A, Parnell J, Feldmann J, et al. Selenium and tellurium concentrations of Carboniferous British coals[J]. Geological Journal, 2019, 54(3): 1401-1412. doi: 10.1002/gj.3238

    CrossRef Google Scholar

    [67] Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements-A tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053

    CrossRef Google Scholar

    [68] de Souza J R, da Silva L, da Rocha M S, et al. Dynamic reaction cell-ICP-MS as a powerful tool for quality control of a Se-enriched dietary supplement[J]. Food Analytical Methods, 2017, 10: 3088-3097. doi: 10.1007/s12161-017-0861-y

    CrossRef Google Scholar

    [69] Henn A S, Rondan F S, Mesko M F, et al. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 143: 48-54. doi: 10.1016/j.sab.2018.02.014

    CrossRef Google Scholar

    [70] 屈明华, 陈雄弟, 倪张林, 等. DRC-ICP-MS法测定土壤硒前处理方法研究[J]. 土壤通报, 2019, 50(3): 698-703.

    Google Scholar

    Qu M H, Chen X D, Ni Z L, et al. Pretreatment for determination of soil selenium by ICP-MS with dynamic reaction cell[J]. Chinese Journal of Soil Science, 2019, 50(3): 698-703.

    Google Scholar

    [71] de Feudis M, D'Amato R, Businelli D, et al. Fate of selenium in soil: A case study in a maize (Zea mays L. ) field under two irrigation regimes and fertilized with sodium selenite[J]. Science of The Total Environment, 2019, 659: 131-139. doi: 10.1016/j.scitotenv.2018.12.200

    CrossRef Google Scholar

    [72] 刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    CrossRef Google Scholar

    Liu Y, Cao G S, Cheng P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J]. Chemistry & Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    CrossRef Google Scholar

    [73] 林立, 王琳琳. 采用ICP-MS/MS对硒和砷检测的质谱干扰[J]. 分析试验室, 2016, 35(3): 344-348.

    Google Scholar

    Lin L, Wang L L. Study on the interference of selenium and arsenic in different detecting conditions by ICP-MS/MS[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 344-348.

    Google Scholar

    [74] Kumkrong P, LeBlanc K L, Mercier P H J, et al. Selenium analysis in waters. Part 1: Regulations and standard methods[J]. Science of The Total Environment, 2018, 640-641: 1611-1634. doi: 10.1016/j.scitotenv.2018.05.392

    CrossRef Google Scholar

    [75] Gil-Díaz T, Schäfer J, Keller V, et al. Tellurium and selenium sorption kinetics and solid fractionation under contrasting estuarine salinity and turbidity conditions[J]. Chemical Geology, 2020, 532: 1-10.

    Google Scholar

    [76] Bolea-Fernandez E, Balcaen L, Resano M, et al. Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(3): 919-929. doi: 10.1007/s00216-014-8195-8

    CrossRef Google Scholar

    [77] di Tullo P, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J]. Science of The Total Environment, 2016, 562: 280-288. doi: 10.1016/j.scitotenv.2016.03.207

    CrossRef Google Scholar

    [78] 谭德灿, 朱建明, 李社红, 等. 同位素双稀释剂法的原理与应用Ⅱ: 应用部分[J]. 矿物岩石地球化学通报, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    CrossRef Google Scholar

    Tan D C, Zhu J M, Li S H, et al. The principle and application of isotopic double spike technique: The application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    CrossRef Google Scholar

    [79] Pons M L, Millet M A, Nowell G N, et al. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76-78 double-spike[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 320-330. doi: 10.1039/C9JA00331B

    CrossRef Google Scholar

    [80] Marguí E, Floor G H, Hidalgo M, et al. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils[J]. Analytical Chemistry, 2010, 82(18): 7744-7751. doi: 10.1021/ac101615w

    CrossRef Google Scholar

    [81] Kocot K, Leardi R, Walczak B, et al. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction[J]. Talanta, 2015, 134: 360-365. doi: 10.1016/j.talanta.2014.11.036

    CrossRef Google Scholar

    [82] Scheinost A C, Kretzschmar R, Pfister S, et al. Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil[J]. Environmental Science & Technology, 2002, 36(23): 5021-5028.

    Google Scholar

    [83] Qin H B, Takeichi Y, Nitani H, et al. Tellurium distri-bution and speciation in contaminated soils from abandoned mine tailings: Comparison with selenium[J]. Environmental Science & Technology, 2017, 51(11): 6027-6035.

    Google Scholar

    [84] Nie Z, Finck N, Heberling F, et al. Adsorption of sele-nium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems[J]. Environmental Science & Technology, 2017, 51(7): 3751-3758.

    Google Scholar

    [85] Ryser A, Strawn D, Marcus M, et al. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands[J]. Environmental Science & Technology, 2006, 40(2): 462-467.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(4691) PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint