Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

Bao-hua DU, Di-bo SHENG, Zhi-xiang LUO, Quan WANG. Determination of Boron in Geological Samples by ICP-OES with Low-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 690-698. doi: 10.15898/j.cnki.11-2131/td.201909250139
Citation: Bao-hua DU, Di-bo SHENG, Zhi-xiang LUO, Quan WANG. Determination of Boron in Geological Samples by ICP-OES with Low-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 690-698. doi: 10.15898/j.cnki.11-2131/td.201909250139

Determination of Boron in Geological Samples by ICP-OES with Low-pressure Closed Digestion

  • BACKGROUND Total boron in geological samples is determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) with acid digestion. The key steps are preventing the loss of boron during the sample digestion stage and reducing matrix interference, spectral interference and memory effect during measurement. OBJECTIVES To establish a method for the determination of boron in geological samples by ICP-OES with low-pressure closed digestion. METHODS Using HF-HNO3-HClO4-H3PO4 to digest samples in a low-pressure closed sample tank, the dissolved boron element is fully complexed with a small amount of phosphoric acid to prevent the volatilization loss of boron. The standard curve was calibrated using the geological solid standard material with similar concentration of matrix and major components to effectively match and reduce the matrix interference of the sample. The operating software provided by the instrument was used to observe and analyze the interference of other elements near the spectral line and to determine the best position and width of background subtraction to reduce the spectral interference in the ICP-OES measurement. 10% Aqua regia was used as the rinsing liquid of the sample introduction system, which effectively reduced the memory effect during measurement. RESULTS When the dilution factor was 200, the detection limit (3SD) was 1.2μg/g, and the quantitative limit (10SD) was 4.0μg/g. The precision and accuracy were analyzed and verified by using the national first-class standard substances in rock, soil and river sediment, the relative standard deviations (n=11) were from 1.8% to 7.9%, and the relative errors were from -3.6% to 6.3%. Compared with the results of external tests, the relative error of boron content above the quantitative limit ranged from -9.3% to 12.5%. CONCLUSIONS The method is suitable for the accurate measurement of boron above 4.0μg/g in geological samples.
  • 加载中
  • [1] 《岩石矿物分析》编委会.岩石矿物分析(第四版第二分册)[M].北京:地质出版社, 2011:376-381.

    Google Scholar

    The editorial committee of Rock and Mineral Analysis.Rock and mineral analysis (The fourth edition:Vol.Ⅱ)[M].Beijing:Geological Publishing House, 2011:376-381.

    Google Scholar

    [2] 闫春燕, 伊文涛, 马培华, 等.微量硼的测定方法研究进展[J].理化检验(化学分册), 2008, 44(2):197-201.

    Google Scholar

    Yan C Y, Yi W T, Ma P H, et al.Recent progress of methods for determination of micro-amounts of boron[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2008, 44(2):197-201.

    Google Scholar

    [3] 曹成东, 魏轶, 刘江斌.发射光谱法同时测定地球化学样品中微量银铍硼锡铋钼[J].岩矿测试, 2010, 29(4):458-460.

    Google Scholar

    Cao C D, Wei Y, Liu J B.Simultaneous determination of trace silver, beryllium, boron, tin, bismuth and molybdenum in geochemical samples by emission spectrometry[J].Rock and Mineral Analysis, 2010, 29(4):458-460.

    Google Scholar

    [4] 郝志红, 姚建贞, 唐瑞玲, 等.直流电弧全谱直读原子发射光谱法(DC-Arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J].光谱学与光谱分析, 2015, 35(2):527-533.

    Google Scholar

    Hao Z H, Yao J Z, Tang R L, et al.Study on the method for determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading reading atomic emission spectrometry (DC-Arc-AES)[J].Spectroscopy and Spectral Analysis, 2015, 35(2):527-533.

    Google Scholar

    [5] 郭颖超, 张晓敏, 姚福存, 等.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测定地球化学样品中银锡硼[J].黄金, 2016, 37(10):85-88.

    Google Scholar

    Guo Y C, Zhang X M, Yao F C, et al.Determination of silver, tin and boron in geochemical samples by CCD-Ⅰ plane grating electric arc direct reading emission spectrometer[J].Gold, 2016, 37(10):85-88.

    Google Scholar

    [6] 肖细炼, 王亚夫, 陈燕波, 等.交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J].冶金分析, 2018, 38(7):27-32.

    Google Scholar

    Xiao X L, Wang Y F, Chen Y B, et al.Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J].Metallurgical Analysis, 2018, 38(7):27-32.

    Google Scholar

    [7] 孙慧莹, 李小辉, 朱少旋, 等.原子发射光谱法测定地球化学样品中银、锡、硼的含量[J].理化检验(化学分册), 2019, 55(10):1231-1234.

    Google Scholar

    Sun H Y, Li X H, Zhu S X, et al.Determination of silver, tin and boron in geochemical samples by atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(10):1231-1234.

    Google Scholar

    [8] Zeibig G.Determination of total, leachable and mobile boron in sedimentary rocks by ICP-AES[J].Mikrochimica Acta, 1989, 99(3):389-397.

    Google Scholar

    [9] Lihareva N, Kosturkova P, Vakarelska T.Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline[J].Fresenius' Journal of Analytical Chemistry, 2000, 367(1):84-86.

    Google Scholar

    [10] Peng Z K, Liu Z N.Accurate determination of boron content in halite by ICP-OES and ICP-MS[J].International Journal of Analytical Chemistry, 2019:1-5.

    Google Scholar

    [11] 李冰, 马新荣, 杨红霞, 等.封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫[J].岩矿测试, 2003, 22(4):241-247.

    Google Scholar

    Li B, Ma X R, Yang H X, et al.Determination of boron, arsenic and sulfur in geological samples by inductively coupled plasma atomic emission spectrometry with sample treatment by pressurized decomposition[J].Rock and Mineral Analysis, 2003, 22(4):241-247.

    Google Scholar

    [12] Kataoka H, Okamoto Y, Tsukahara S, et al.Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES)[J].Analytica Chimica Acta, 2008, 610(2):179-185. doi: 10.1016/j.aca.2008.01.043

    CrossRef Google Scholar

    [13] 顾继红, 于媛君, 王赫男, 等.电感耦合等离子体原子发射光谱法测定高炉渣中硼[J].冶金分析, 2008, 28(6):19-23.

    Google Scholar

    Gu J H, Yu Y J, Wang H N, et al.Determination of boron in blast furnace slag by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2008, 28(6):19-23.

    Google Scholar

    [14] 武明丽.ICP-AES法测定土壤样品中的硼[J].山东化工, 2011, 40(7):48-49.

    Google Scholar

    Wu M L.Determination of boron in soil by ICP-AES[J].Shandong Chemical Industry, 2011, 40(7):48-49.

    Google Scholar

    [15] 辛文彩, 林学辉, 徐磊.ICP-AES测定海洋沉积物中的硼[J].现代仪器, 2011, 17(5):91-92.

    Google Scholar

    Xin W C, Lin X H, Xu L.Determination of boron in marine sediments by ICP-AES[J].Modern Instruments, 2011, 17(5):91-92.

    Google Scholar

    [16] 赵志飞, 陈芝桂, 唐兴敏, 等.全谱直读等离子体发射光谱法测定土壤中的硼[J].资源环境与工程, 2012, 26(6):638-640.

    Google Scholar

    Zhao Z F, Chen Z G, Tang X M, et al.Determination of boron in soil samples by inductively coupled plasma optical emission spectrometry[J].Resources Environment and Engineering, 2012, 26(6):638-640.

    Google Scholar

    [17] Turner B L, Bielnicka A, Dalling J W, et al.Interference by iron in the determination of boron by ICP-OES in mehlich-Ⅲ extracts and total element digests of tropical forest soils[J].Communications in Soil Science and Plant Analysis, 2016, 47(21):2378-2386. doi: 10.1080/00103624.2016.1228952

    CrossRef Google Scholar

    [18] 王佳翰, 汤凯, 龙军桥, 等.敞开消解-ICP-OES同时测定地球化学样品中硫、磷、砷、硼[J].化学试剂, 2018, 40(1):53-56.

    Google Scholar

    Wang J H, Tang K, Long J Q, et al.Simultaneous determination of sulfur, phosphorus, arsenic, and boron in geochemical samples by ICP-OES with open digestion[J].Chemical Reagent, 2018, 40(1):53-56.

    Google Scholar

    [19] 肖凡, 张宁, 姜云军, 等.密闭酸溶-电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J].冶金分析, 2018, 38(6):50-54.

    Google Scholar

    Xiao F, Zhang N, Jiang Y J, et al.Determination of boron in geochemical survey samples by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J].Metallurgical Analysis, 2018, 38(6):50-54.

    Google Scholar

    [20] 张军.ICP-AES测定农用地土壤详查深层土中的硼[J].广州化工, 2019, 47(7):110-111.

    Google Scholar

    Zhang J.Determination of boron in deep soil of agricultural soil by ICP-AES[J].Guangzhou Chemical Industry, 2019, 47(7):110-111.

    Google Scholar

    [21] 魏双, 王力强, 郑智慷, 等.微波消解-电感耦合等离子体发射光谱仪测定土壤样品中的硼[J].地质调查与研究, 2019, 42(4):256-258.

    Google Scholar

    Wei S, Wang L Q, Zheng Z K, et al.Determination of Boron in soils by microwave digester and ICP-OES[J]. Geological Survey and Research, 2019, 42(4):256-258.

    Google Scholar

    [22] 姚海云, 鲁红仙, 黎金标.同位素稀释等离子体质谱法测定地质样品中痕量硼[J].分析测试学报, 2006, 25(1):73-76.

    Google Scholar

    Yao H Y, Lu H X, Li J B.Determination of trace boron in geological samples by isotope dilution-inductively coupled plasma mass spectrometry[J].Journal of Instrumental Analysis, 2006, 25(1):73-76.

    Google Scholar

    [23] 赵玲, 冯永明, 李胜生, 等.碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡[J].岩矿测试, 2010, 29(4):355-358.

    Google Scholar

    Zhao L, Feng Y M, Li S S, et al.Determination of boron and tin in geochemical exploration samples by inductively coupled plasma mass spectrometry with alkali fusion sample preparation[J].Rock and Mineral Analysis, 2010, 29(4):355-358.

    Google Scholar

    [24] 宋伟娇, 代世峰, 赵蕾, 等.微波消解-电感耦合等离子体质谱法测定煤中的硼[J].岩矿测试, 2014, 33(3):327-331.

    Google Scholar

    Song W J, Dai S F, Zhao L, et al.Determination of boron in coal samples with microwave digestion by inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):327-331.

    Google Scholar

    [25] 杨贤, 张洁, 蔡金芳, 等.电感耦合等离子体质谱法测定地质样品中硼[J].冶金分析, 2014, 34(6):7-10.

    Google Scholar

    Yang X, Zhang J, Cai J F, et al.Determination of boron in geological samples by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2014, 34(6):7-10.

    Google Scholar

    [26] Al-Ammar A, Reitznerová E, Barnes R M.Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(12):1861-1867. doi: 10.1016/S0584-8547(00)00282-2

    CrossRef Google Scholar

    [27] Menard G, Vlastélic I, Ionov D A, et al.Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS:Insights into the B budget of the mantle and B behavior in magmatic systems[J].Chemical geology, 2013, 354:139-149. doi: 10.1016/j.chemgeo.2013.06.017

    CrossRef Google Scholar

    [28] Liu T, He T, Shi Q H, et al.Rapid determination of boron in 61 soil, sediment, and rock reference materials by ICP-MS[J].Atomic Spectroscopy, 2019, 40(2):55-62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(2377) PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint