Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

Xi-lian XIAO, Ya-fu WANG, Chun-lin ZHANG, Xiao-li YANG. Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116
Citation: Xi-lian XIAO, Ya-fu WANG, Chun-lin ZHANG, Xiao-li YANG. Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116

Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry

  • BACKGROUND The abundances and variation characteristics of silver, boron and tin reflect the regional metallogenic conditions and indicate the existence of deposits or mineralization. Silver, boron and tin in carbonate minerals are elements that must be determined in exploration geochemistry and multi-objective geochemistry. The analytical method was one of the essential methods in the matching analysis scheme of geochemical elements. Because carbonate minerals are different from common rocks, soils and water-based sediments, these minerals are mainly limestone, dolomite and other rock samples with relatively high calcium and magnesium elements, and the technical difficulty in determining silver, boron and tin in these samples is that the high content of calcium and magnesium matrix will seriously disturb the elements with low contents to be measured, and the sample is easily contaminated due to carbon dioxide during the spectrum recording process. OBJECTIVES To solve the problems of rapid and accurate determination of silver, boron and tin in carbonate minerals. METHODS In view of the particularity of carbonate minerals, an analytical method for the simultaneous determination of silver, boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-optical spectrometry (AC-Arc-OES) was established. RESULTS By using 10% hydrochloric acid to digest the sample, the interference of matrix elements, calcium and magnesium, was eliminated. Germanium was used as the internal standard element for quantitative analysis, which eliminated the influence of external factors, such as the change of arc excitation conditions and matrix composition of the sample. The silver element and the long wave germanium element were used to form the analysis line pair, and the boron and tin element and the short wave germanium element were used to form the analysis line pair with good sensitivity. Twelve national geochemical reference materials, such as natural carbonate rock and synthetic limestone, were selected as the standard series. The matrix components were similar to those of the samples. The method of off-line subtraction was used to correct the background. The detection limits of the method for silver, boron and tin were 0.008μg/g, 0.49μg/g and 0.18μg/g, respectively. The precision of the method was larger than 10% for silver, and that of other elements was better than 10%. The accuracy of the method was verified by the national level geochemical reference materials, and the logarithm difference between the average value and the certified value of the reference materials was less than or equal to ±0.05. CONCLUSIONS This method was used to solve the problem of rapid determination of silver, boron and tin in carbonate minerals. It is simple and fast, and suitable for the determination of a large numbers of samples. All of the technical indices of the method meet the requirements of multi-objective regional geochemical survey specifications.
  • 加载中
  • [1] 赵博, 张德会, 于蕾, 等.从克拉克值到元素的地球化学性质或行为再到成矿作用[J].矿物岩石地球化学通报, 2014(2):252-261.

    Google Scholar

    Zhao B, Zhang D H, Yu L, et al.From clark values to elemental geochemical properties or behaviors, and to mineralization[J].Bulletin of Mineralogy, Petroloy and Geochemisty, 2014(2):252-261.

    Google Scholar

    [2] 李惠, 张国义, 禹斌, 等.构造叠加晕找盲矿法及其在矿山深部找矿效果[J].地学前缘, 2010, 17(1):287-293.

    Google Scholar

    Li H, Zhang G Y, Yu B, et al.Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J].Earth Science Frontiers, 2010, 17(1):287-293.

    Google Scholar

    [3] 张勤.多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J].第四纪研究, 2005, 5(3):292-297.

    Google Scholar

    Zhang Q.A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J].Quaternary Sciences, 2005, 5(3):292-297.

    Google Scholar

    [4] 陈郑辉, 王登红, 盛继福, 等.中国锡矿成矿规律概要[J].地质学报, 2015, 89(6):1026-1037.

    Google Scholar

    Chen Z H, Wang D H, Sheng J F, et al.The metallogenic regularity of tin deposits in China[J].Acta Geologica Sinica, 2015, 89(6):1026-1037.

    Google Scholar

    [5] 《岩石矿物分析》编委会.岩石矿物分析(第四版第四分册)[M].北京:地质出版社, 2011:781-787.

    Google Scholar

    The editorial committee of Rock and Mineral Analysis. Rock and mineral analysis (The fourth edition:Vol.Ⅳ)[M].Beijing:Geological Publishing House, 2011:781-787.

    Google Scholar

    [6] 叶家瑜, 江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004:220-226.

    Google Scholar

    Ye J Y, Jiang B L.Regional geochemical exploration sample analysis method[M].Beijing:Geological Publishing House, 2004:220-226.

    Google Scholar

    [7] Eggin S M, Woodhead J D, Kinslet L, et al.A sample method for the precise analysis determination of ≥ 40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J].Chemical Geology, 1996, 134:311-326.

    Google Scholar

    [8] 胡圣虹, 陈爱芳, 林守麟, 等.地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究[J].地球科学——中国地质大学学报, 2000, 25(2):186-190.

    Google Scholar

    Hu S H, Chen A F, Lin S L, et al.ICP-MS analytical research into 40 trace and ultra-trace elements in geological samples[J].Earth Science-Journal of China University of Geosciences, 2000, 25(2):186-190.

    Google Scholar

    [9] Ralf M, Jürgen H, Heike T, et al.Multielement trace determination in SiC powders:Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV-ICP-OES and DC arc OES[J].Analytical and Bioanalytical Chemistry, 2005, 383:1060-1074. doi: 10.1007/s00216-005-3415-x

    CrossRef Google Scholar

    [10] 王艳君, 蒋晓光, 张彦甫, 等.电感耦合等离子体原子发射光谱法(ICP-AES)测定铜磁铁矿中铜、锰、铝、钙、镁、钛和磷的含量[J].中国无机分析化学, 2015, 5(3):64-69.

    Google Scholar

    Wang Y J, Jiang X G, Zhang Y F, et al.Determination of Cu, Mn, Al, Ca, Mg, Ti and P in copper magnetite by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):64-69.

    Google Scholar

    [11] 石华, 陶莉萍, 安国荣.电感耦合等离子体发射光谱(ICP-AES)碳酸盐型石墨中硅、铁、铝等9种元素[J].中国无机分析化学, 2016, 6(1):59-61.

    Google Scholar

    Shi H, Tao L P, An G R.Determination of nine elements in carbonate graphite ores by ICP-AES[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):59-61.

    Google Scholar

    [12] 张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定化探样品中主、次和痕量组分[J].理化检验(化学分册), 2005, 41(8):547-552.

    Google Scholar

    Zhang Q, Fan S Z, Pan Y S, et al.X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8):547-552.

    Google Scholar

    [13] 张勤, 李国会, 樊守忠, 等.X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J].分析试验室, 2008, 27(11):51-57.

    Google Scholar

    Zhang Q, Li G H, Fan S Z, et al.Study on determination of 42 major, minor and trace elements in soil and stream sediment samples[J].Chinese Journal of Analysis Laboratory, 2008, 27(11):51-57.

    Google Scholar

    [14] 童晓民, 王楠, 董再蒸.低稀释比熔片X射线荧光法分析钼精矿中主次微量元素[J].分析试验室, 2019, 38(3):369-373.

    Google Scholar

    Tong X M, Wang N, Dong Z Z.X-ray fluorescence analysis of major minor and minim elements in molybdenum concentrates using fused glass disc method with low dilution ratio[J].Chinese Journal of Analysis Laboratory, 2019, 38(3):369-373.

    Google Scholar

    [15] 王鹤龄, 李光一, 曲少鹏, 等.氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J].岩矿测试, 2017, 36(4):367-373.

    Google Scholar

    Wang H L, Li G Y, Qu S P, et al.Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(4):367-373.

    Google Scholar

    [16] Flórián K, Fischer W, Nickel H.Direct solid sample analysis of SiC-powders by DC glow discharge and DC-arc emission spectroscopy[J].Fresenius Journal of Analytical Chemistry, 1994, 349:174-175. doi: 10.1007/BF00323259

    CrossRef Google Scholar

    [17] Tibor K, Jürgen H, Otto F.Determination of trace metals in industrial boron carbide by solid sampling optical emission spectrometry.Optimization of DC arc excitation (current, atmosphere and chemical modifier)[J].Microchimica Acta, 2007, 156:231-243.

    Google Scholar

    [18] 刘江斌, 武永芝.原子发射光谱法快速测定矿石中锡[J].冶金分析, 2013, 33(3):65-68.

    Google Scholar

    Liu J B, Wu Y Z.Rapid determination of tin in ore by atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(3):65-68.

    Google Scholar

    [19] 姚建贞, 郝志红, 唐瑞玲, 等.固体发射光谱法测定地球化学样品中的高含量锡[J].光谱学与光谱分析, 2013, 33(11):3124-3127.

    Google Scholar

    Yao J Z, Hao Z H, Tang R L, et al.Determination of high content of tin in geochemical samples by solid emission spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(11):3124-3127.

    Google Scholar

    [20] 余宇, 和振云, 毛振才, 等.交流电弧发射光谱的不同灵敏度谱线测定锡[J].岩矿测试, 2013, 32(1):44-47.

    Google Scholar

    Yu Y, He Z Y, Mao Z C, et al.Determination of tin by spectral lines with different sensitivity of alternating current arc emission spectroscopy[J].Rock and Mineral Analysis, 2013, 32(1):44-47.

    Google Scholar

    [21] 朱英.改进电极发射光谱法测定地球化学样品中Ag、B、Sn[J].资源环境与工程, 2007, 21(4):489-491.

    Google Scholar

    Zhu Y.Measuring Ag, B, Sn in the geochemical sample based on modified electrode emission spectra method[J].Resources Environment & Engineering, 2007, 21(4):489-491.

    Google Scholar

    [22] 胡跃波, 石亚萍, 李蓓, 等.交流电弧原子发射光谱法测定地质样品中的微量银[J].理化检验(化学分册), 2015, 51(10):1414-1417.

    Google Scholar

    Hu Y B, Shi Y P, Li B, et al.Determination of trace silver in geological samples by AC-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(10):1414-1417.

    Google Scholar

    [23] 辛文芳.交流电弧原子发射光谱法测定锶矿石中银[J].冶金分析, 2016, 36(8):56-59.

    Google Scholar

    Xin W F.Determination of silver in strontium ore by alternating current Arc atomic emission spectrometry[J].Metallurgical Analysis, 2016, 36(8):56-59.

    Google Scholar

    [24] 张庆华, 万飞, 杨婷.发射光谱深孔大电极法测定硼、锡、银[J].吉林地质, 2009, 28(2):110-112.

    Google Scholar

    Zhang Q H, Wan F, Yang T.Determination of boron, tin and silver by emission spectroscopy deep hole, large electrode method[J].Jilin Geology, 2009, 28(2):110-112.

    Google Scholar

    [25] 郑瑞华.水平电极发射光谱法测定多目标生态地球化学土壤样品中的银[J].福建分析测试, 2007, 16(3):38-41.

    Google Scholar

    Zheng R H.Determination of silver in multi-purposes eco-geochemistry soil samples by level electrode emission spectrometry[J].Fujian Analysis and Testing, 2007, 16(3):38-41.

    Google Scholar

    [26] 丁春霞, 王琳, 孙慧莹, 等.发射光谱法测定生态地球化学调查样品中的银锡硼[J].黄金, 2012, 33(10):55-58.

    Google Scholar

    Ding C X, Wang L, Sun H Y, et al.Determination of sliver, tin and boron in ecological geochemistry samples by emission spectrometry[J].Gold, 2012, 33(10):55-58.

    Google Scholar

    [27] 吴葆存.发射光谱法测定碳酸盐岩矿样品中的银、锡、硼[J].黄金, 2003, 24(11):46-47.

    Google Scholar

    Wu B C.Determination of silver, tin and boron in carbonate rock ore sample by atomic emission spectrometry (AES)[J].Gold, 2003, 24(11):46-47.

    Google Scholar

    [28] 张文华, 张芳.发射光谱法测定碳酸盐岩石样品中8个痕量元素[J].岩矿测试, 1995, 14(1):37-40.

    Google Scholar

    Zhang W H, Zhang F.Determination of 8 trace elements in carbonate rock samples by emission spectrometry[J].Metallurgical Analysis, 1995, 14(1):37-40.

    Google Scholar

    [29] 郝志红, 姚建贞, 唐瑞玲, 等.直流电弧全谱直读原子发射光谱法(DC-ARC-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J].光谱学与光谱分析, 2015, 35(2):527-533.

    Google Scholar

    Hao Z H, Yao J Z, Tang R L, et al.Study on the method for the determination of trace boron, molybdenum, silver, tin, lead in geochemical samples by direct current arc of full spectrum direct reading atomic emission spectroscopy (DC-ARC-AES)[J].Spectroscopy and Spectral Analysis, 2015, 35(2):527-533.

    Google Scholar

    [30] 李小辉.交流电弧直读原子发射光谱法快速测定钼矿石中的银[J].理化检验(化学分册), 2017, 53(6):716-718.

    Google Scholar

    Li X H.Rapid determination of silver in molybdenum ore by AC direct reading atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6):716-718.

    Google Scholar

    [31] 肖细炼, 王亚夫, 陈燕波, 等.交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J].冶金分析, 2018, 38(7):27-32.

    Google Scholar

    Xiao X L, Wang Y F, Chen Y B, et al.Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J].Metallurgical Analysis, 2018, 38(7):27-32.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(1456) PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint