Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

Chun-fei CHEN, Xin HONG, Xiao-fei WANG, Rong SU, Xiao-xi LIANG, Yu HE, Qiu LU, Yan TIAN. Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 777-784. doi: 10.15898/j.cnki.11-2131/td.201905300077
Citation: Chun-fei CHEN, Xin HONG, Xiao-fei WANG, Rong SU, Xiao-xi LIANG, Yu HE, Qiu LU, Yan TIAN. Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 777-784. doi: 10.15898/j.cnki.11-2131/td.201905300077

Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry

  • OBJECTIVES Due to the advantages of simple sample preparation, non-destructive determination, and rapid detection, the X-ray fluorescence spectrometry technique has become a robust method for determination of manganese in soil or sediment. Manganese in soil and sediment standard material has the maximum content of 2490mg/kg, thus the traditional X-ray fluorescence spectrometry (XRF) can easily suffer from the drawbacks of standard curve measurement range due to the limited manganese content in standard soil or sediment samples. OBJECTIVES To develop a good method for the determination of manganese in polluted soil or sediment. METHODS To address this major concern, manganese solutions were added to the commercially available soil standards in a quantitative manner to give a series of new soil standards with higher manganese content. The content of manganese can be determined by X-ray fluorescence spectrometry. RESULTS The establishment of a novel standard curve by taking advantage of these new soil standards could significantly promote the upper limit of manganese measurement from 2490mg/kg to 3780mg/kg. The analytical results of manganese were consistent with the reference value and a recovery of 97.8%-108.3%. The results of high-manganese samples were consistent with the values acquired by inductively coupled plasma-optical emission spectrometry, with the relative deviation less than 5.7% and the relative standard deviation lower than 0.4% (n=7). Conclusion Results show good accuracy and precision in the determination of high-manganese soils and sediments.
  • 加载中
  • [1] Curran C P, Robert M P, Ho S, et al.Incorporating genetics and genomics in risk assessment for inhaled manganese:From data to policy[J].Neuro Toxicology, 2009, 30(5):754-760.

    Google Scholar

    [2] 张飞, 罗学刚, 王佳.U及伴生重金属Mn、Pb对土壤酶活性的影响[J].环境科学与技术, 2015, 38(3):44-49.

    Google Scholar

    Zhang F, Luo X G, Wang J.Effects of uranium and associated heavy metals Mn and Pb on soil enzyme activities[J].Environmental Science & Technology, 2015, 38(3):44-49.

    Google Scholar

    [3] 于方明, 漆培艺, 刘可慧, 等.锰污染土壤石灰改良对油茶生长及抗氧化酶系统的影响[J].农业环境科学学报, 2019, 38(8):1882-1890.

    Google Scholar

    Yu F M, Qi P Y, Liu K H, et al.Effects of lime on the growth and antioxidant enzyme system of camellia oleifera in manganese-contaminated soil[J].Journal of Agro-Environment Science, 2019, 38(8):1882-1890.

    Google Scholar

    [4] 马剑丽, 倪群英.微波消解-火焰原子吸收法测定土壤中铜锌铅镍锰[J].广州化工, 2006, 34(4):61-62.

    Google Scholar

    Ma J L, Ni Q Y.Detecting Cu, Zn, Pb, Ni and Mn in soil with microwave digestion- AAS[J].Guangzhou Chemical Industry, 2006, 34(4):61-62.

    Google Scholar

    [5] 赵庆令, 李清彩.电感耦合等离子体发射光谱法同时测定土壤样品中54种组分[J].岩矿测试, 2011, 30(1):75-78.

    Google Scholar

    Zhao Q L, Li Q C.Simultaneous determination of 54 components in soil samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2011, 30(1):75-78.

    Google Scholar

    [6] 徐进力, 邢夏, 顾雪, 等.KED模式/电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中磷、钛、钒、铬、锰[J].中国无机分析化学, 2018, 8(5):28-33.

    Google Scholar

    Xu J L, Xing X, Gu X, et al.Determination of P, Ti, Ⅴ, Cr, Mn in geological samples by KED mode/ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(5):28-33.

    Google Scholar

    [7] 王世芳, 韩平, 王纪华, 等.X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J].食品安全质量检测学报, 2016, 7(11):4394-4400.

    Google Scholar

    Wang S F, Han P, Wang J H, et al.Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J].Food Safety and Quality Detection Technology, 2016, 7(11):4394-4400.

    Google Scholar

    [8] 吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398.

    Google Scholar

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398.

    Google Scholar

    [9] Ferri R, Donna F, Smith D R, et al.Heavy metals in soil and salad in the proximity of historical ferroalloy emission[J].Journal of Environmental Protection, 2012, 3:374-375. doi: 10.4236/jep.2012.35047

    CrossRef Google Scholar

    [10] 田衎, 郭伟臣, 杨永, 等.波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素[J].冶金分析, 2019, 39(10):30-36.

    Google Scholar

    Tian K, Guo W C, Yang Y, et al.Determination of thirteen heavy metals in soil and stream sediment by wavelength dispersive X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2019, 39(10):30-36.

    Google Scholar

    [11] Minkina T M, Soldatov A Ⅴ, Nevidomskaya D G, et al.New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES) and extractive fractionation[J].Geochemistry International, 2016, 54(2):197-204. doi: 10.1134/S001670291512006X

    CrossRef Google Scholar

    [12] 梁祖顺, 李小莉, 刘峰, 等.粉末压片-X射线荧光光谱法测定含铌多金属矿样中铌[J].冶金分析, 2014, 34(10):65-69.

    Google Scholar

    Liang Z S, Li X L, Liu F, et al.Determination of niobium in niobium containing multi-metal ore by X-ray fluorescence spectrometry with powder pressed pellet[J].Metallurgical Analysis, 2014, 34(10):65-69.

    Google Scholar

    [13] 王子杰, 王干珍, 汤行, 等.粉末压片-X射线荧光光谱法测定铋矿石中铋及主量组分[J].冶金分析, 2018, 38(8):21-25.

    Google Scholar

    Wang Z J, Wang G Z, Tang X, et al.Determination of bismuth and major components in bismuth ore by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(8):21-25.

    Google Scholar

    [14] 张莉娟, 刘义博, 李小莉, 等.超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素[J].岩矿测试, 2014, 33(4):517-522.

    Google Scholar

    Zhang L J, Liu Y B, Li X L, et al.Determination of major elements in stream sediments and soils by X-ray fluorescence spectrometry using pressed-superfine powder pellets[J].Rock and Mineral Analysis, 2014, 33(4):517-522.

    Google Scholar

    [15] 刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677.

    Google Scholar

    Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677.

    Google Scholar

    [16] 孙晓慧, 李章, 刘希良.微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J].冶金分析, 2014, 34(11):56-60.

    Google Scholar

    Sun X H, Li Z, Liu X L.Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2014, 34(11):56-60.

    Google Scholar

    [17] 何恬叶, 张颖红, 胡子文.微波消解ICP-OES法测定土壤样品中22种元素[J].分析试验室, 2018, 37(1):84-87.

    Google Scholar

    He T Y, Zhang Y H, Hu Z W.Determination of 22 elements in soil by ICP-OES with microwave digestion[J].Chinese Journal of Analysis Laboratory, 2018, 37(1):84-87.

    Google Scholar

    [18] 余海军, 张莉莉, 屈志朋, 等.微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J].中国无机分析化学, 2019, 9(1):34-38.

    Google Scholar

    Yu H J, Zhang L L, Qu Z P, et al.Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1):34-38.

    Google Scholar

    [19] 杨叶琴, 赵昌平, 赵杰.微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J].理化检验(化学分册), 2019, 5(1):63-67.

    Google Scholar

    Yang Y Q, Zhao C P, Zhao J.Determination of eight heavy metal elements in soil by microwave digestion inductively coupled plasma atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 5(1):63-67.

    Google Scholar

    [20] 龙海洋, 王维生, 韦月越, 等.矿区周边土壤中重金属形态分析及污染风险评价[J].广西大学学报, 2016, 41(5):1676-1682.

    Google Scholar

    Long H Y, Wang W S, Wei Y Y, et al.Speciation analysis and pollution risk assessment of heavy metals in the soils surrounding mine area[J].Journal of Guangxi University (Natural Science Edition), 2016, 41(5):1676-1682.

    Google Scholar

    [21] 高焕方, 曹园城, 何炉杰, 等.Tessier法和BCR法对比磷酸二氢钠处置含铅污染土壤形态分析[J].环境工程学报, 2017, 11(10):2751-2756.

    Google Scholar

    Gao H F, Cao Y C, He L J, et al.Speciation analysis of lead-contaminated soil treated with sodium dihydrogen phosphate using Tessier and BCR[J].Chinese Journal of Environmental Engineering, 2017, 11(10):2751-2756.

    Google Scholar

    [22] 倪子月, 陈吉文, 刘明博, 等.能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J].冶金分析, 2016, 36(10):10-14.

    Google Scholar

    Ni Z Y, Chen J W, Liu M B, et al.Interference correction of energy dispersive X-ray fluorescence spectrometric determination of chromium and manganese in soil[J].Metallurgical Analysis, 2016, 36(10):10-14.

    Google Scholar

    [23] 尹静, 黄睿涛.粉末压片制-X射线荧光光谱法测定铁矿石中锌砷锰[J].岩矿测试, 2011, 30(4):491-493.

    Google Scholar

    Yin J, Huang R T.Elemental determination of zinc, arsenic and manganese in iron ore by X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2011, 30(4):491-493.

    Google Scholar

    [24] 邓述培, 范鹏飞, 唐玉霜, 等.X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J].中国无机分析化学, 2019, 9(4):12-15.

    Google Scholar

    Deng S P, Fan P F, Tang Y S, et al.Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4):12-15.

    Google Scholar

    [25] 吕善胜, 徐金龙, 曲强.理论α系数和经验系数法相结合校正-X射线荧光光谱法测定铁矿石中14种组分[J].冶金分析, 2016, 36(4):46-51.

    Google Scholar

    Lü S S, Xu J L, Qu Q.Determination of fourteen components in iron ore by X-ray fluorescence spectrometry with theoretical α coefficient and empirical coefficient method correction[J].Metallurgical Analysis, 2016, 36(4):46-51.

    Google Scholar

    [26] 殷惠民, 杜祯宇, 任立军, 等.波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J].冶金分析, 2018, 38(7):1-11.

    Google Scholar

    Yin H M, Du Z Y, Ren L J, et al.Coefficient effectiveness judgment of overlapping line and matrix effect correction in wavelength dispersive X-ray fluorescence spectrometry and its application in determination of heavy metal elements in soils and sediment samples[J].Metallurgical Analysis, 2018, 38(7):1-11.

    Google Scholar

    [27] 殷惠民, 杜祯宇, 李玉武, 等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析, 2018, 38(4):1-10.

    Google Scholar

    Yin H M, Du Z Y, Li Y W, et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J].Metallurgical Analysis, 2018, 38(4):1-10.

    Google Scholar

    [28] 胡德新, 武素茹, 刘跃勇, 等.改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态[J].岩矿测试, 2014, 33(3):369-373.

    Google Scholar

    Hu D X, Wu S R, Liu Y Y, et al.Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J].Rock and Mineral Analysis, 2014, 33(3):369-373.

    Google Scholar

    [29] 林承奇, 黄华斌, 胡恭任, 等.九龙江流域水稻土重金属赋存形态及污染评价[J].环境科学, 2019, 40(1):453-460.

    Google Scholar

    Lin C Q, Huang H B, Hu G R, et al.Assessment of the speciation and pollution of heavy metals in paddy soils from the Jiulong River Basin[J].Environmental Science, 2019, 40(1):453-460.

    Google Scholar

    [30] 谭秉和, 张香荣, 姚迪民, 等.用X射线光谱法测定锰的X射线发射谱的细结构及锰的价态分析[J].岩矿测试, 1994, 13(3):169-174.

    Google Scholar

    Tan B H, Zhang X R, Yao D M, et al.Measurement of X-ray Mn Kβ spectra structure and chemical state analysis of Mn by the conventional XRF spectrometer[J].Rock and Mineral Analysis, 1994, 13(3):169-174.

    Google Scholar

    [31] 张建波, 王谦, 林力, 等.锰的价态研究及在X射线荧光光谱测定锰矿中的应用[J].冶金分析, 2011, 31(4):20-25.

    Google Scholar

    Zhang J B, Wang Q, Lin L, et al.Study on chemical valence of manganese and its application in X-ray fluorescence spectrometry determination of manganese ore[J].Metallurgical Analysis, 2011, 31(4):20-25.

    Google Scholar

    [32] 谭和平, 高杨, 吕昊, 等.土壤重金属X射线荧光光谱非标样测试方法研究[J].生态环境学报, 2012, 21(4):760-763.

    Google Scholar

    Tan H P, Gao Y, Lü H, et al.The research of non-standard test method in soil heavy metal by X-ray fluorescence spectrometry[J].Ecology and Environmental Sciences, 2012, 21(4):760-763.

    Google Scholar

    [33] 卢兵, 杜少文, 盛红宇, 等.AAS、ICP-AES、ICP-MS及XRF测定地质样品中铜铅锌锰的对比研究[J].黄金, 2014, 35(9):78-81.

    Google Scholar

    Lu B, Du S W, Sheng H Y, et al.Contrast research on determination of Cu, Pb, Zn, Mn by AAS, ICP-AES, ICP-MS and XRF in geological samples[J].Gold, 2014, 35(9):78-81.

    Google Scholar

    [34] 黄元.XRF-ICP-AES法测定土壤中的主次元素[J].化学分析计量, 2015, 24(6):73-76.

    Google Scholar

    Huang Y.Determination of major and minor elements in soil by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J].Chemical Analysis and Meterage, 2015, 24(6):73-76.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article Metrics

Article views(1915) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint