Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

WANG Zhong-qiang, LI Chao, JIANG Xiao-jun, ZHOU Li-min, ZHAO Jiu-jiang, YAN Qing-gao, LI Ya-dong, CHEN Yao-kun. In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization[J]. Rock and Mineral Analysis, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118
Citation: WANG Zhong-qiang, LI Chao, JIANG Xiao-jun, ZHOU Li-min, ZHAO Jiu-jiang, YAN Qing-gao, LI Ya-dong, CHEN Yao-kun. In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization[J]. Rock and Mineral Analysis, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118

In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization

More Information
  • OBJECTIVES

    The Xiuwacu Mo-W deposit is a typical hydrothermal quartz vein deposit in the Yidun island arc Cu-Mo metallogenic belt, northwest Yunnan. Numerous studies have been conducted on rock and ore chronology and petrogenesis, dynamics, but its ore-forming fluid evolution has been rarely studied.

    OBJECTIVES

    To reveal the origin and evolution of ore-forming fluids of the Xiuwacu Mo-W deposit.

    METHODS

    Scanning electron microscope (SEM) cathodoluminescence method, and in situ trace element (LA-ICP-MS) and in situ Sr (fs-LA-MC-ICP-MS) isotope analyses of scheelite.

    RESULTS

    The occurrences of scheelite and the cathodoluminescence images indicated three generations of scheelite, Ⅰ, Ⅱ, and Ⅲ, with the middle stage scheelite being the most developed. The rare earth element pattern of the scheelite in the early stage was similar to that of the porphyritic granite. It showed a right-inclined pattern with light rare earth enrichment and a moderate negative Eu anomaly (δEu=0.42). The average Mo content was 3.0%, and the average 87Sr/86Sr was 0.7098, close to the specular feldspar granite (0.7075-0.7098). Compared with scheelite in the early stage, the content of light rare earth elements in the scheelite from the middle stage was low, and Eu also had a medium negative anomaly (δEu=0.37). Mo content was reduced to an average of 2445μg/g, and 87Sr/86Sr increased to 0.7113. The rare earth distribution pattern of scheelite in the later stage showed an arched pattern with relative enrichment of middle rare earth and no Eu anomaly (δEu=0.93). Mo content of scheelite decreased to 56μg/g, and average 87Sr/86Sr was 0.7083.

    Conclusion

    From early to late, the gradual decrease of light rare-earth elements, especially La and Ce, in scheelite indicates the crystallization of bastnaesite. The increase in δEu and the sharp decrease in Mo content indicate the transformation of ore-forming fluids from oxidation to reduction. The change of Sr isotope composition indicates the change in the source of ore-forming materials. The magmatic fluid contributed a lot in the early stage, and the large-scale interaction between the magma-hydrothermal fluids and surrounding rocks is responsible for the formation of scheelite in the middle stage. The strata provide amounts of Ca for scheelite formation, indicating that strong water-rock interaction played an important role in the formation of the deposit.

  • 加载中
  • [1] Brugger J, Lahaye Y, Costa S, et al.Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt.Charlotte and Drysdale gold deposits, western Australia)[J].Contributions to Mineralogy and Petrology, 2000, 139(3):251-264. doi: 10.1007/s004100000135

    CrossRef Google Scholar

    [2] Brugger J, Maas R, Lahaye Y, et al.Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, western Australia[J].Chemical Geology, 2002, 182(2):203-225.

    Google Scholar

    [3] Dostal J, Kontak D J, Chatterjee A K.Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada:Genetic implications[J].Mineralogy & Petrology, 2009, 97(1-2):95-109.

    Google Scholar

    [4] Fu Y, Sun X, Zhou H, et al.In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, southwest China and its metallogenic implications[J].Ore Geology Reviews, 2017, 80:828-837. doi: 10.1016/j.oregeorev.2016.08.030

    CrossRef Google Scholar

    [5] Guo S, Chen Y, Liu C Z, et al.Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar:Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization[J].Journal of Asian Earth Sciences, 2016, 117:82-106. doi: 10.1016/j.jseaes.2015.12.004

    CrossRef Google Scholar

    [6] Li C, Zhou L, Zhao Z, et al.In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025

    CrossRef Google Scholar

    [7] Ding T, Ma D, Lu J, et al.Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China[J].Ore Geology Reviews, 2018, 94:193-211. doi: 10.1016/j.oregeorev.2018.01.029

    CrossRef Google Scholar

    [8] Ghaderi M.Rare earth element tracing for Bamsar, Revesht and Nezam-Abad tungsten deposits in Central Iran[C]//Proceedings of American Geophysical Union 1999 Fall Meeting, 1999.

    Google Scholar

    [9] 曾志刚, 李朝阳, 刘玉平, 等.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学, 1998, 26(2):34-38.

    Google Scholar

    Zeng Z G, Li C Y, Liu Y P, et al.REE geochemistry of scheelite of two genetic types from Nanyangtian, southeastern Yunnan[J].Geology-Geochemistry, 1998, 26(2):34-38.

    Google Scholar

    [10] 张家菁, 梅玉萍, 王登红, 等.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报, 2008, 82(7):927-931.

    Google Scholar

    Zhang J Q, Mei Y P, Wang D H, et al.Isochronology study on the Xianglushan scheelite deposit in north Jiangxi Province and its geological significance[J].Acta Geologica Sinic, 2008, 82(7):927-931.

    Google Scholar

    [11] 彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年[J].科学通报, 2003, 48(18):1976.

    Google Scholar

    Peng J T, Hu R Z, Zhao J H, et al.Sm-Nd and quartz Ar-Ar dating of scheelite in Woxi Au-Sb-W deposit, western Hunan[J].Chinese Science Bulletin, 2003, 48(18):1976.

    Google Scholar

    [12] 彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J].地球化学, 2005, 34(2):115-122.

    Google Scholar

    Peng J T, Hu R Z, Zhao J H, et al.Rare earth element (REE) geochemistry for scheelite from the Woxi Au-Sb-W deposit, western Hunan[J].Geochimica, 2005, 34(2):115-122.

    Google Scholar

    [13] 熊德信, 孙晓明, 石贵勇, 等.云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J].岩石学报, 2005, 22(3):733-741.

    Google Scholar

    Xiong D X, Sun X M, Shi G Y.Trace elements, rare earth elements (REE) and Nd-Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan Province, China[J].Acta Petrologica Sinica, 2005, 22(3):733-741.

    Google Scholar

    [14] 刘善宝, 刘战庆, 王成辉, 等.赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J].地学前缘, 2017, 24(5):17-30.

    Google Scholar

    Liu S B, Liu Z Q, Wang C H, et al.Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi[J].Earth Science Frontiers, 2017, 24(5):17-30.

    Google Scholar

    [15] 聂利青, 周涛发, 张千明, 等.安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J].岩石学报, 2017, 33(11):3518-3530.

    Google Scholar

    Nie L Q, Zhou T F, Zhang Q M, et al.Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J].Acta Petrologica Sinica, 2017, 33(11):3518-3530.

    Google Scholar

    [16] Sun K, Chen B.Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China[J].American Mineralogist, 2017, 102(5):1114-1128.

    Google Scholar

    [17] Zhang Q, Zhang R Q, Gao J F, et al.In-situ LA-ICP-MS trace elemental analyses of scheelite and wolframite:Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China[J].Ore Geology Reviews, 2018:S0169136817310065.

    Google Scholar

    [18] 余海军, 李文昌.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据[J].岩石学报, 2016, 32(8):2265-2280.

    Google Scholar

    Yu H J, Li W C.Geochronology and geochemistry of Xiuwacu intrusions, NW Yunnan:Evidences for two-period magmatic activity and mineralization[J].Acta Petrologica Sinica, 2016, 32(8):2265-2280.

    Google Scholar

    [19] 张向飞, 李文昌, 尹光候, 等.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报, 2017, 33(7):2018-2036.

    Google Scholar

    Zhang X F, Li W C, Yin G H, et al.Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo mining district, NW Yunnan, China:Constraints by geochronology, oxygen fugacity and geochemistry[J].Acta Petrologica Sinica, 2017, 33(7):2018-2036.

    Google Scholar

    [20] Wang X S, Bi X W, Leng C B, et al.Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews, 2014, 61:73-95. doi: 10.1016/j.oregeorev.2014.01.006

    CrossRef Google Scholar

    [21] Wang X S, Hu R Z, Bi X W, et al.Petrogenesis of Late Cretaceous Ⅰ-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos, 2014, 208-209:202-219.

    Google Scholar

    [22] 王新松, 毕献武, 胡瑞忠, 等.滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报, 2015, 31(11):3171-3188.

    Google Scholar

    Wang X S, Bi X W, Hu R Z, et al.S-Pb isotopic geochemistry of Xiuwacu magmatic hydrothermal Mo-W deposit in Zhongdian area, NW Yunnan:Constrains on the sources of metal[J].Acta Petrologica Sinica, 2015, 31(11):3171-3188.

    Google Scholar

    [23] 余海军, 李文昌.滇西北休瓦促钼矿区两期侵入岩年代学、地球化学及其地质意义[J].矿床地质, 2014, 33(增刊):319-320.

    Google Scholar

    Yu H J, Li W C.Chronology, geochemistry and geological significance of two stages of intrusive rocks in Xiuwa Mo mining area, northwest Yunnan[J].Mineral Deposits, 2014, 33(Supplement):319-320.

    Google Scholar

    [24] 刘学龙, 李文昌, 杨富成, 等.云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义[J].地质学报, 2017, 91(4):849-863.

    Google Scholar

    Liu X L, Li W C, Yang F C, et al.Zircon U-Pb Age and Hf isotopic composition of the two-period magmatism of the Xiuwacu Mo-W-Cu deposit in the Geza arc belt, Yunnan, and their tectonic significance[J].Acta Geologica Sinica, 2017, 91(4):849-863.

    Google Scholar

    [25] 江小均, 陈振宇, 李文昌, 等.滇西北休瓦促晚白垩世岩浆成矿作用动力学机制探讨[J].地学前缘, 2019, 26(2):137-156.

    Google Scholar

    Jiang X J, Chen Z Y, Li W C, et al.Discussion on the dynamic mechanisms of the Late Cretaceous magmatism-metallogenesis in Xiuwacu, northwestern Yunnan Province[J].Earth Science Frontiers, 2019, 26(2):137-156.

    Google Scholar

    [26] 李文昌, 余海军, 尹光候.西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 2013, 29(4):1129-1144.

    Google Scholar

    Li W C, Yu H J, Yin G H.Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China[J].Acta Petrologica Sinica, 2013, 29(4):1129-1144.

    Google Scholar

    [27] 侯增谦, 杨岳清, 王海平, 等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 2003.

    Google Scholar

    Hou Z Q, Yang Y Q, Wang H P, et al.Sand-forming process and metallogenic system of the island arc collision in the Sanjiang River[M].Beijing:Geological Publishing House, 2003.

    Google Scholar

    [28] 李文昌, 尹光侯, 余海军, 等.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报, 2011, 27(9):2541-2552.

    Google Scholar

    Li W C, Yin G H, Yu H J, et al.The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J].Acta Petrologica Sinica, 2011, 27(9):2541-2552.

    Google Scholar

    [29] Deng J, Wang Q F, Li G J, et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 2014, 26(2):419-437. doi: 10.1016/j.gr.2013.08.002

    CrossRef Google Scholar

    [30] Deng J, Wang C, Zi J W, et al.Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture:New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith[J].Gondwana Research, 2018, 62:75-92. doi: 10.1016/j.gr.2017.10.008

    CrossRef Google Scholar

    [31] 李建康, 李文昌, 王登红, 等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报, 2007, 23(10):2415-2422.

    Google Scholar

    Li J K, Li W C, Wang D H, et al.Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian arc[J].Acta Petrologica Sinica, 2007, 23(10):2415-2422.

    Google Scholar

    [32] 李文昌, 余海军, 尹光侯, 等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 2012, 31(2):282-292.

    Google Scholar

    Li W C, Yu H J, Yin G H, et al.Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment[J].Mineral Deposits, 2012, 31(2):282-292.

    Google Scholar

    [33] Peng H J, Mao J W, Pei R F, et al.Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan Province, China:Implications for mineralization of the Zhongdian arc[J].Journal of Asian Earth Sciences, 2014, 79:682-695. doi: 10.1016/j.jseaes.2013.07.008

    CrossRef Google Scholar

    [34] Wang C, Bagas L, Lu Y, et al.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J].Earth-Science Reviews, 2016, 156:39-65. doi: 10.1016/j.earscirev.2016.02.008

    CrossRef Google Scholar

    [35] Wang C, Deng J, Bagas L, et al.Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the eastern Qinling Orogen[J].Gondwana Research, 2017, 50:293-310. doi: 10.1016/j.gr.2017.04.008

    CrossRef Google Scholar

    [36] Zu B, Xue C J, Chi G X, et al.Geology, geochronology and geochemistry of granitic intrusions and the related ores at the Hongshan Cu-polymetallic deposit:Insights into the Late Cretaceous post-collisional porphyry-related mineralization systems in the southern Yidun arc, SW China[J].Ore Geology Reviews, 2016, 77:25-42. doi: 10.1016/j.oregeorev.2016.02.002

    CrossRef Google Scholar

    [37] 孟健寅, 杨立强, 吕亮, 等.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2013, 29(4):1214-1222.

    Google Scholar

    Meng J Y, Yang L Q, Lü L, et al.Re-Os dating of molybdenite from the Hongshan Cu-Mo deposit in northwest Yunnan and its implications for mineralization[J].Acta Petrologica Sinica, 2013, 29(4):1214-1222.

    Google Scholar

    [38] Lai A Q, Zhe L Ⅰ, Liu X, et al.Petrogenesis and tectonic significance of the Xiuwacu two-period magmatism in Geza arc of Yunnan Province:Constraints from lithogeochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J].Acta Geologica Sinica, 2016, 90(2):757-758. doi: 10.1111/1755-6724.12706

    CrossRef Google Scholar

    [39] Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [40] Linnen R L, Williams-Jones A E.Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia[J].Economic Geology, 1990, 85(8):1840-1856. doi: 10.2113/gsecongeo.85.8.1840

    CrossRef Google Scholar

    [41] Rempel K U, Williams-Jones A E, Migdisov A A.The partitioning of molybdenum(Ⅵ) between aqueous liquid and vapour at temperatures up to 370℃[J].Geochimica et Cosmochimica Acta, 2009, 73(11):3381-3392. doi: 10.1016/j.gca.2009.03.004

    CrossRef Google Scholar

    [42] Song G, Qin K, Li G, et al.Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China[J]. American Mineralogist, 2014, 99:303-317. doi: 10.2138/am.2014.4431

    CrossRef Google Scholar

    [43] Wu W H, Xu S J, Yang J D, et al.Isotopic characteristics of river sediments on the Tibetan Plateau[J].Chemical Geology, 2010, 269(3-4):406-413. doi: 10.1016/j.chemgeo.2009.10.015

    CrossRef Google Scholar

    [44] Jahn B M, Wu F Y, Lo C H, et al.Curst-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, central China[J].Chemical Geology, 1999, 157(2-3):119-146.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1365) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint