Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 1
Article Contents

Jing HUANG, Ying-bin WANG, Guan-xuan ZHOU, Zhen-qian MA. Determination of Gallium in Coal Fly Ash by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 92-98. doi: 10.15898/j.cnki.11-2131/td.201905190065
Citation: Jing HUANG, Ying-bin WANG, Guan-xuan ZHOU, Zhen-qian MA. Determination of Gallium in Coal Fly Ash by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 92-98. doi: 10.15898/j.cnki.11-2131/td.201905190065

Determination of Gallium in Coal Fly Ash by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

More Information
  • BACKGROUNDThe content of gallium in coal fly ash is 12-230μg/g. The determination of gallium in coal fly ash is crucial to realize the high-value-added utilization of coal fly ash. As a sample pretreatment method, the conventional open wet digestion method has limitations including a large amount of hydrofluoric acid, corrosion of analytical instruments, long dissolution time, the loss of elements, and environmental pollution. Microwave digestion has the advantages of complete digestion, minimal loss, and short digestion time, which can effectively solve the shortcomings of the open wet digestion method. OBJECTIVESTo develop a good method for the determination of gallium in coal fly ash. METHODSThe coal fly ash was collected from a power plant in Inner Mongolia. The sample was digested with nitric acid (5.0mL), hydrofluoric acid (1.0mL), hydrochloric acid (5.0mL) and perchloric acid (1.0mL) by microwave digestion and then determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). RESULTSThe results showed that gallium could be leached totally using HNO3-HF-HCl-HClO4 (5:1:5:1, V/V) when the temperature was 190℃, the time 30 minutes and the microwave power 1400W. The limit of detection was 0.004mg/L. The relative standard deviation (RSD) was 1.7% with the recoveries ranging from 95.1% to 100.9%. CONCLUSIONSICP-OES with microwave digestion method adds hydrochloric acid and reduces the amount of hydrofluoric acid, thus shortening the time of removing fluoride and reducing the damage to instruments. The method is easy to be used for the determination of trace gallium in coal fly ash.
  • 加载中
  • [1] 赵汀, 秦鹏珍, 王安建, 等.镓矿资源需求趋势分析与中国镓产业发展思考[J].地球学报, 2017, 38(1):77-84.

    Google Scholar

    Zhao T, Qin P Z, Wang A J, et al.An analysis of gallium ore resources demand trend and the thinking concerning China's gallium industry development[J].Acta Geoscientica Sinica, 2017, 38(1):77-84.

    Google Scholar

    [2] 冯建广, 高增, 王振江, 等.镓在工业生产中的提取与应用[J].硅酸盐通报, 2018, 37(9):2852-2856.

    Google Scholar

    Feng J G, Gao Z, Wang Z J, et al.Extraction and application of gallium in industrial manufacture[J].Bulletin of the Chinese Ceramic Society, 2018, 37(9):2852-2856.

    Google Scholar

    [3] Yao Z T, Ji X S, Sarker P K, et al.A comprehensive review on the applications of coal fly ash[J].Earth-Science Reviews, 2015, 141:105-121.

    Google Scholar

    [4] 刘延红, 郭昭华, 池君洲, 等.镓回收方法与技术的研究与进展[J].稀有金属与硬质合金, 2016, 44(1):1-8.

    Google Scholar

    Liu Y H, Guo Z H, Chi J Z, et al.Research and the latest development of gallium recovery process and technology[J].Rare Metals and Cemented Carbides, 2016, 44(1):1-8.

    Google Scholar

    [5] 张伦和.铝土矿资源合理开发与利用[J].轻金属, 2012(2):3-11.

    Google Scholar

    Zhang L H.Reasonable development and utilization of bauxite resource[J].Light Metals, 2012(2):3-11.

    Google Scholar

    [6] Jung C H, Osako M.Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery[J].Waste Management, 2009, 29(5):1532-1540.

    Google Scholar

    [7] Moskalyk R R.Gallium:The backbone of the electronics industry[J].Minerals Engineering, 2003, 16(10):921-929.

    Google Scholar

    [8] 唐碧玉, 施意华, 杨仲平, 等.灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J].岩矿测试, 2018, 37(4):371-378.

    Google Scholar

    Tang B Y, Shi Y H, Yang Z P, et al.Determination of gallium, germanium and indium in coal by inductively coupled plasma-mass spectrometry with ashing acid digestion[J].Rock and Mineral Analysis, 2018, 37(4):371-378.

    Google Scholar

    [9] 魏雅娟, 吴雪英, 江荆, 等.微波消解-电感耦合等离子体原子发射光谱法测定银精矿中铅锌铜砷锑铋镉[J].冶金分析, 2018, 38(5):47-53.

    Google Scholar

    Wei Y J, Wu X Y, Jiang J, et al.Determination of lead, zinc, copper, arsenic, antimony, bismuth and cadmium in silver concentrate by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2018, 38(5):47-53.

    Google Scholar

    [10] 李婷, 辛志峰, 徐梦, 等.复合助剂活化粉煤灰对镓酸浸效果的研究[J].化学工程, 2016, 44(7):55-57.

    Google Scholar

    Li T, Xin Z F, Xu M, et al.Acid leaching of gallium from fly ash activated by compound additive[J]. Chemical Engineering, 2016, 44(7):55-57.

    Google Scholar

    [11] 邓长生, 李盛富, 张建梅, 等.常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽[J].岩矿测试, 2018, 37(4):364-370.

    Google Scholar

    Deng C S, Li S F, Zhang J M, et al.Determination of niobium and tantalum in geochemical exploration samples by ICP-MS with acid solution at normal pressure[J].Rock and Mineral Analysis, 2018, 37(4):364-370.

    Google Scholar

    [12] 王勇, 龚厚亮, 但娟, 等.微波消解-电感耦合等离子体原子发射光谱法测定脱硝催化剂中13种元素[J].冶金分析, 2018, 38(10):56-62.

    Google Scholar

    Wang Y, Gong H L, Dan J, et al.Determination of thirteen elements in denitrification catalyst by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2018, 38(10):56-62.

    Google Scholar

    [13] Mketo N, Nomngongo P N, Ngila J C.An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2016, 124:201-208.

    Google Scholar

    [14] Bressy F C, Brito G B, Barbosa I S, et al.Determination of trace element concentrations in tomato samples at different stages of maturation by ICP-OES and ICP-MS following microwave-assisted digestion[J].Microchemical Journal, 2013, 109:145-149.

    Google Scholar

    [15] Yin X, Wang X, Chen S, et al.Trace element determination in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J].Atomic Spectroscopy, 2018, 39(4):137-141.

    Google Scholar

    [16] Bakircioglu D, Topraksever N, Yurtsever S, et al.ICP-OES determination of some trace elements in herbal oils using a three-phase emulsion method and comparison with conventional methods[J].Atomic Spectroscopy, 2018, 39(1):38-45.

    Google Scholar

    [17] 赵慧玲, 刘建.泡塑吸附分离萃取光度法测定粉煤灰中的镓[J].岩矿测试, 2010, 29(4):465-468.

    Google Scholar

    Zhao H L, Liu J.Determination of gallium in coal fly ash samples by photometry after separation and pre-concentration with polyurethane foam absorption solvent extraction[J].Rock and Mineral Analysis, 2010, 29(4):465-468.

    Google Scholar

    [18] 刘环, 康佳红, 王玉学.碱熔-电感耦合等离子体质谱法测定地质样品中铍铯镓铊铌钽锆铪铀钍[J].冶金分析, 2019, 39(3):26-32.

    Google Scholar

    Liu H, Kang J H, Wang Y X.Determination of beryllium, cesium, gallium, thallium, niobium, tantalum, zirconium, hafnium, uranium and thorium in geological sample by inductively coupled plasma mass spectrometry with alkali fusion[J].Metallurgical Analysis, 2019, 39(3):26-32.

    Google Scholar

    [19] 刘冰冰, 王英滨.电感耦合等离子体原子发射光谱法测定粉煤灰中的镓[J].光谱实验室, 2012, 29(6):3840-3844.

    Google Scholar

    Liu B B, Wang Y B.Determination of gallium in fly ash by ICP-AES[J].Chinese Journal of Spectroscopy Laboratory, 2012, 29(6):3840-3844.

    Google Scholar

    [20] Arantes de Carvalho G G, Kondaveeti S, Petri D F S, et al.Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP-OES analysis[J].Talanta, 2016, 161:707-712.

    Google Scholar

    [21] 张小东, 赵飞燕.粉煤灰中镓提取与净化技术的研究[J].煤炭技术, 2018, 37(11):336-339.

    Google Scholar

    Zhang X D, Zhao F Y.Study on extraction and purification technology of gallium in fly ash[J].Coal Technology, 2018, 37(11):336-339.

    Google Scholar

    [22] 侯新凯, 梁爽, 刘柱燊, 等.粉煤灰中玻璃体含量的化学物相分析[J].硅酸盐通报, 2017, 36(11):3587-3594.

    Google Scholar

    Hou X K, Liang S, Liu Z S, et al.Chemical phase analysis of glass content in fly ash[J].Bulletin of the Chinese Ceramic Society, 2017, 36(11):3587-3594.

    Google Scholar

    [23] 李婷, 辛志峰, 徐梦, 等.煅烧活化粉煤灰对镓酸浸效果的实验研究[J].无机盐工业, 2016, 48(5):40-43.

    Google Scholar

    Li T, Xin Z F, Xu M, et al.Study on acid leaching of gallium from fly ash activated by calcination[J].Inorganic Chemicals Industry, 2016, 48(5):40-43.

    Google Scholar

    [24] Shao P, Wang W F, Chen L, et al.Distribution, occu-rrence, and enrichment of gallium in the Middle Jurassic coals of the Muli Coalfield, Qinghai, China[J].Journal of Geochemical Exploration, 2018, 185:116-129.

    Google Scholar

    [25] 王珲, 宋蔷, 姚强, 等.ICP-OES/ICP-MS测定煤中多种元素的微波消解方法研究[J].光谱学与光谱分析, 2012, 32(6):1662-1665.

    Google Scholar

    Wang H, Song Q, Yao Q, et al.Study on microwave digestion of coal for the determination of multi- element by ICP-OES and ICP-MS[J].Spectroscopy and Spectral Analysis, 2012, 32(6):1662-1665.

    Google Scholar

    [26] 李晓敬, 边朋沙, 金倩, 等.高压微波消解-电感耦合等离子体质谱法测定地质样品中分散元素镓铟铊锗碲镉[J].冶金分析, 2019, 39(4):38-44.

    Google Scholar

    Li X J, Bian P S, Jin Q, et al.Determination of disperse elements of gallium, indium, thallium, germanium, tellurium and cadmium in geological samples by inductively coupled plasma mass spectrometry with high-pressure microwave digestion[J].Metallurgical Analysis, 2019, 39(4):38-44.

    Google Scholar

    [27] 霍红英.微波消解-电感耦合等离子体原子发射光谱法测定钒铁中7种杂质元素[J].冶金分析, 2018, 38(2):65-70.

    Google Scholar

    Huo H Y.Determination of 7 impurity elements in ferrovanadium alloy by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Metallurgical Analysis, 2018, 38(2):65-70.

    Google Scholar

    [28] 徐玉宏, 张静, 王静媛, 等.微波消解-分光光度法测定农用粉煤灰中的硼[J].土壤, 2009, 41(5):833-835.

    Google Scholar

    Xu Y H, Zhang J, Wang J Y.et al.Determination of boron in fly ash for agricultural use by microwave digestion-spectrophotometry[J].Soils, 2009, 41(5):833-835.

    Google Scholar

    [29] 赵学沛.微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J].岩石矿物学杂志, 2019, 38(2):254-258.

    Google Scholar

    Zhao X P.Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J].Acta Petrologica et Mineralogica, 2019, 38(2):254-258.

    Google Scholar

    [30] 朱霞萍, 尹继先, 陈卫东, 等.微波消解ICP-OES快速测定难溶钒钛磁铁矿中铁、钛、钒[J].光谱学与光谱分析, 2010, 30(8):2277-2280.

    Google Scholar

    Zhu X P, Yin J X, Chen W D, et al.Determination of Fe, Ti and V in vanadium and titanium magnetite by ICP-OES and microwave-assisted digestion[J].Spectroscopy and Spectral Analysis, 2010, 30(8):2277-2280.

    Google Scholar

    [31] 冯永明, 邢应香, 刘洪青, 等.微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J].岩矿测试, 2014, 33(1):34-39.

    Google Scholar

    Feng Y M, Xing Y X, Liu H Q, et al.Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2014, 33(1):34-39.

    Google Scholar

    [32] 申明乐, 黄雪征.煤中镓的火焰原子吸收光谱法测定[J].分析测试学报, 2008, 27(6):657-659.

    Google Scholar

    Shen M L, Huang X Z.Flame atomic absorption spectrometric determination of gallium in coal[J]. Journal of Instrumental Analysis, 2008, 27(6):657-659.

    Google Scholar

    [33] 张杰芳, 闫玉乐, 夏承莉, 等.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试, 2017, 36(1):46-51.

    Google Scholar

    Zhang J F, Yan Y L, Xia C L, et al.Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(1):46-51.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(1693) PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint