Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 1
Article Contents

Zhong-hua SONG, Tai-jin LU, Shi TANG, Bo GAO, Jun SU, Jie KE. Discrimination of HPHT-treated Type Ⅰa Cape Diamonds Using Optical and Photoluminescence Spectroscopic Techniques[J]. Rock and Mineral Analysis, 2020, 39(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201905200067
Citation: Zhong-hua SONG, Tai-jin LU, Shi TANG, Bo GAO, Jun SU, Jie KE. Discrimination of HPHT-treated Type Ⅰa Cape Diamonds Using Optical and Photoluminescence Spectroscopic Techniques[J]. Rock and Mineral Analysis, 2020, 39(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201905200067

Discrimination of HPHT-treated Type Ⅰa Cape Diamonds Using Optical and Photoluminescence Spectroscopic Techniques

  • BACKGROUNDSpectroscopic characteristics for brown colored Type Ⅱa diamonds treated by high pressure high temperature (HPHT) processes have been investigated extensively. However, almost no reports are available on the variation of the spectroscopic features for the type Ⅰa Cape series brown colored diamonds treated by HPHT processes. OBJECTIVESTo help the laboratory to resolve the origin of yellow diamonds. METHODSThe ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy were used to analyze the spectral features for the samples before and after each treatment. RESULTSThe color of the diamonds changed from grayish brown to brownish yellow after the HPHT process. Meanwhile, the FTIR/UV-Vis absorption, as well as the photoluminescence was also greatly changed. Besides the 415nm and the 477nm absorption peaks, the treated diamonds also display H3 defect (503.2nm) and the gradually increasing absorption from 550nm to shortwave, resulted in the color changing from grayish brown to brownish yellow. In the mid-infrared region, the three peaks of 1498, 1520 and 1547cm-1 become a broad band centered at 1498cm-1 after treatment, and the photoluminescence spectrum displayed two distinct defects-H3 (503.2nm) and H2 (986.2nm). CONCLUSIONSThe spectroscopic features provide a basis for accurate identification of HPHT-treated type Ⅰa Cape series brown diamonds in gem laboratories, and increase understanding of the variation mechanism of the nitrogen and hydrogen related lattice defects in the diamonds during the HPHT processes.
  • 加载中
  • [1] Hainschwang T.HPHT treatment of different classes of typeⅠ brown diamond[J].Journal of Gemmology, 2005, 29(5/6):261-273.

    Google Scholar

    [2] King J M, Shigley J E, Gelb T H, et al.Characterization and grading of natural-color yellow diamonds[J].Gems & Gemology, 2005, 41(2):88-115.

    Google Scholar

    [3] 宋中华, 魏华, 田晶.钻石辨假[M].北京:文化出版社, 2017.

    Google Scholar

    Song Z H, Wei H, Tian J.Identification of Diamonds[M].Beijing:Cultural Development Press, 2017.

    Google Scholar

    [4] Collins A T.The colour of diamond and how it may be changed[J].Journal of Gemmology, 2001, 27(6):341-359. doi: 10.15506/JoG.2001.27.6.341

    CrossRef Google Scholar

    [5] Schmetzer K.Clues to the process used by general electric to enthance the GE Pol diamonds[J].Gems & Gemology, 1999, 35(4):186-190.

    Google Scholar

    [6] Fisher D, Spits R A.Spectroscopic evidence of GE pol HPHT-treated natural type Ⅱa diamonds[J].Gems & Gemology, 2000, 36(1):42-49.

    Google Scholar

    [7] Reinitz I M, Buerki P R, Shigley J E, et al.Identification of HPHT-treated yellow to green diamonds[J].Gems & Gemology, 2000, 36(2):128-137.

    Google Scholar

    [8] Collins A T, KandaH, Kitawaki H.Colour changes pro-duced in natural brown diamonds by high-pressure, high-temperature treatment[J].Diamond and Related Materials, 2000(9):113-122.

    Google Scholar

    [9] 宋中华, 陆太进, 苏隽, 等.无色-近无色高温高压合成钻石的谱图特征及其鉴别方法[J].岩矿测试, 2016, 35(5):496-504.

    Google Scholar

    Song Z H, Lu T J, Su J, et al.The spectral characteristics and identification techniques for colorless and near-colorless HPHT synthetic diamonds[J].Rock and mineral Analysis, 2016, 35(5):496-504.

    Google Scholar

    [10] Schmetzer K.High pressure and high temperature treatment of diamonds-A review of the patent literature from five decades[J].The Journal of Gemmology, 2010, 32(1-4):52-65. doi: 10.15506/JoG.2010.32.1-4.52

    CrossRef Google Scholar

    [11] Fisher D.Brown diamonds and high pressure high tem-perature treatment[J].Lithos, 2009, 112S:619-624.

    Google Scholar

    [12] 宋中华, 陆太进, 苏隽, 等.利用吸收和发光光谱技术分析高温高压处理天然富氢钻石的鉴定特征[J].岩矿测试, 2018, 37(1):64-69.

    Google Scholar

    Song Z H, Lu T J, Su J, et al.Identification of HPHT-treated hydrogen-rich diamonds optical absorption and photo luminescence spectroscopic techniques[J].Rock and Mineral Analysis, 2018, 37(1):64-69.

    Google Scholar

    [13] 宋中华, 陆太进, 苏隽, 等.不同类型褐色钻石的高温高压处理结果初析[C]//中国国际珠宝首饰学术交流会论文集, 2017: 15-17.http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705040072

    Google Scholar

    Song Z H, Lu T J, Su J, et al.HPHT-treated Experiment for Different Types of Brown Diamonds[C]//Proceedings of China International Gems & Jewelry Academic Conference, 2017: 15-17.

    Google Scholar

    [14] DeWeerdt F, Collions A T.The influence of pressure on high-pressure, high-temperature annealing of type Ⅰa diamond[J].Diamond and Related Materials, 2003, 12:507-510. doi: 10.1016/S0925-9635(02)00319-9

    CrossRef Google Scholar

    [15] Collions A T.The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy[J].Diamond and Related Materials, 2003, 12:1976-1983. doi: 10.1016/S0925-9635(03)00262-0

    CrossRef Google Scholar

    [16] Fritsch E, Hainschwang T, Massi L, et al.Hydrogen-related optical centers in natural diamond-An update[J].New Diamond and Frontier Carbon Technology, 2007, 17(2):63-89.

    Google Scholar

    [17] Breeding C M, Eaton-Magaña S, Shigley J E.Natural-color green diamonds:A beautiful conundrum[J].Gems & Gemology, 2018, 54(1):2-27.

    Google Scholar

    [18] Fritsch E, Scarratt K V G.Optical properties of some natural diamonds with high hydrogen content[J].Diamond Optic Ⅱ, 1989, 1146:201-206.

    Google Scholar

    [19] Massi L, Fritsch E, Collins A T, et al.The "amber centres" and their relation to the brown colour in diamond[J].Diamond and Related Materials, 2005, 14:1623-1629. doi: 10.1016/j.diamond.2005.05.003

    CrossRef Google Scholar

    [20] Dobrinets I A, Vins VG, Zaitsev A M.HPHT-treated diamonds[EB/OL].2013.

    Google Scholar

    [21] Baker J M.A new proposal for the structure of platelets in diamond[J].Diamond and Related Materials, 1998, 7:1282-1290. doi: 10.1016/S0925-9635(98)00188-5

    CrossRef Google Scholar

    [22] Goss J P, Briddon P R, Hill V, et al.Identification of the structure of the 3107cm-1 H-related defect in diamond[J].Journal of Physics:Condensed Matter, 2014, 26:1-6.

    Google Scholar

    [23] Woods G S.Platelets and the Infrared Absorption of Type Ⅰa Diamonds[C]//Proceedings of the Royal Society of London, 1986: 219-238.

    Google Scholar

    [24] Hainschwang T, Fritsch E, Massi L, et al.The C center isolated nitrogen-related infrared absorption at 2688cm-1:Perfect harmony in diamond[J].Journal of Applied Spectroscopy, 2012, 79(5):737-743. doi: 10.1007/s10812-012-9664-5

    CrossRef Google Scholar

    [25] Tretiakova L.Spectroscopic methods for the identification of natural yellow gem-quality diamonds[J].European Journal of Mineralogy, 2009, 21:43-50. doi: 10.1127/0935-1221/2009/0021-1885

    CrossRef Google Scholar

    [26] Buerki P R, Reinitz I M, Muhlmeister S, et al. Observation of the H2 defect in gem-quality type Ⅰa diamond[J].Diamond and Related Materials, 1999, 8:1061-1066. doi: 10.1016/S0925-9635(99)00094-1

    CrossRef Google Scholar

    [27] Hainschwang T, Notari F, Fritsch E, et al.Natural, un-treated diamonds showing the A, B and C infrared absorptions ("ABC diamonds"), and the H2 absorption[J]. Diamond and Related Materials, 2006, 15:1555-1564. doi: 10.1016/j.diamond.2005.12.029

    CrossRef Google Scholar

    [28] Goss J P, Jones R.Properties, Growth and Applications of Diamond[M].London:INSPEC, IEEE, 2001.

    Google Scholar

    [29] Collions A T.Vacancy enhanced aggregation of nitrogen in diamond[J].Journal of Physics C:Solid State Physics, 1980, 13:2641-2650. doi: 10.1088/0022-3719/13/14/006

    CrossRef Google Scholar

    [30] Wang W Y, Mose T M.Gem quality CVD synthetic dia-monds from gemesis[J].Gems & Gemology, 2011, 71(3):227-228.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(883) PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint