Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 3
Article Contents

Zhan-chang LEI, Si-qin-tu HAN, Chang-ju JIANG, Hui-zhen LIANG. Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127
Citation: Zhan-chang LEI, Si-qin-tu HAN, Chang-ju JIANG, Hui-zhen LIANG. Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127

Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion

  • BACKGROUNDThe main types of primary tin ore occur in skarn, porphyry, cassiterite silicate vein, cassiterite sulfide vein, quartz vein and greisen tin deposits. Tin ores are generally insoluble in hydrochloric acid, nitric acid and aqua regia, and tin ores cannot be dissolved completely when treated with sulfuric acid or hydrofluoric acid. Traditional measurement methods such as phenylfluorone-cetyltrimethyl ammonium bromide spectrophotometry and iodometry have disadvantages, such as the serious interference of the associated elements in the sample, poor stability, high detection limit and low analysis efficiency. OBJECTIVESTo establish a method for the determination of tin in primary ore by Inductively Coupled Plasma-Mass Spectrometry. METHODSThe sample was melted and decomposed by sodium oxide, and leached by hot water, followed by tartaric acid and hydrochloric acid acidification. 103Rh was used as the internal standard element to correct instrument signal drift, and the matrix effect was overcome by high-dilution factors. RESULTSThe detection limit of the method was 0.1μg/g for tin, the precision was less than 5%, the minimum detection concentration was 0.4μg/g, and the measurement range was 12.5-12700μg/g. CONCLUSIONSThe method has simple pretreatment and operation. The analysis efficiency and data quality are an improvement over traditional methods.
  • 加载中
  • [1] 张颖, 宫嘉辰.铝片还原-碘量法测定银锡二元合金中锡[J].有色矿冶, 2017, 33(3):59-61. doi: 10.3969/j.issn.1007-967X.2017.03.014

    CrossRef Google Scholar

    Zhang Y, Gong J C.Determination of tin silver tin binary alloy by aluminum sheet reduction-iodometry[J].Non-Ferrous Mining and Metallurgy, 2017, 33(3):59-61. doi: 10.3969/j.issn.1007-967X.2017.03.014

    CrossRef Google Scholar

    [2] 何小虎, 周素莲, 韦莉, 等.碘量法测定铟锡氧化物靶材废料中锡[J].冶金分析, 2013, 33(9):65-69.

    Google Scholar

    He X H, Zhou S L, Wei L, et al.Determination of tin in indium tin oxide target waste by iodometry[J].Metallurgical Analysis, 2013, 33(9):65-69.

    Google Scholar

    [3] 叶家瑜.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004.

    Google Scholar

    Ye J Y.Sample Analysis Method for Regional Geochemical Exploration[M].Beijing:Geological Publishing House, 2004.

    Google Scholar

    [4] 胡永玫.碘量法测定掺锑二氧化锡粉中锡[J].冶金分析, 2018, 38(11):66-70.

    Google Scholar

    Hu Y M.Determination of tin in antimony-doped tin oxide powder by iodometry[J].Metallurgical Analysis, 2018, 38(11):66-70.

    Google Scholar

    [5] 苏洋, 刘红英.苯芴酮-溴化十六烷基三甲基铵分光光度法测定钛铁中锡[J].冶金分析, 2015, 35(4):65-76.

    Google Scholar

    Su Y, Liu H Y.Determination of tin in ferrotitanium by phenylfluorone-cetyl trimethyi ammonium bromide spectrophotometry[J].Metallurgical Analysis, 2015, 35(4):65-76.

    Google Scholar

    [6] 谭仪文.苯芴酮-溴代十六烷基三甲胺分光光度法测定析出铅中的锡[J].中国有色冶金, 2005, 4(2):23-25. doi: 10.3969/j.issn.1672-6103.2005.02.006

    CrossRef Google Scholar

    Tan Y W.Determining tin in deposited lead by benzfluorenone-bromo-hexadecyl-trimethylamine spectrophotometry[J].China Nonferrous Metallurgy, 2005, 4(2):23-25. doi: 10.3969/j.issn.1672-6103.2005.02.006

    CrossRef Google Scholar

    [7] 姚建贞, 郝志红, 唐瑞玲, 等.固体发射光谱法测定地球化学样品中的高含量锡[J].光谱学与光谱分析, 2013, 33(11):3124-3127. doi: 10.3964/j.issn.1000-0593(2013)11-3124-04

    CrossRef Google Scholar

    Yao J Z, Hao Z H, Tang R L, et al.Determination of high content of tin in geochemical samples by solid emission spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(11):3124-3127. doi: 10.3964/j.issn.1000-0593(2013)11-3124-04

    CrossRef Google Scholar

    [8] 刘江斌, 武永芝.原子发射光谱法快速测定矿石中锡[J].冶金分析, 2013, 33(3):65-68. doi: 10.3969/j.issn.1000-7571.2013.03.012

    CrossRef Google Scholar

    Liu J B, Wu Y Z.Rapid determination of tin in ore by atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(3):65-68. doi: 10.3969/j.issn.1000-7571.2013.03.012

    CrossRef Google Scholar

    [9] 辛文芳, 李伟, 乌晓蒙.发射光谱法测多目标区域地球化学调查中银、硼、锡三元素的分析总结[J].地质与资源, 2016, 25(4):401-403. doi: 10.3969/j.issn.1671-1947.2016.04.016

    CrossRef Google Scholar

    Xin W F, Li W, Wu X M.Determination of silver, boron and tin from multi-purpose regional geochemical survey by emission spectrometry[J].Geology and Resources, 2016, 25(4):401-403. doi: 10.3969/j.issn.1671-1947.2016.04.016

    CrossRef Google Scholar

    [10] 胡长春, 王沿方, 陈作王.电感耦合等离子体原子发射光谱法测定锡铅合金中的锡[J].化学分析计量, 2018, 27(5):72-75. doi: 10.3969/j.issn.1008-6145.2018.05.017

    CrossRef Google Scholar

    Hu C C, Wang Y F, Chen Z W.Determination of tin in tin-lead alloy by inductively coupled plasma atomic emission spectrometry[J].Chemical Analysis and Meterage, 2018, 27(5):72-75. doi: 10.3969/j.issn.1008-6145.2018.05.017

    CrossRef Google Scholar

    [11] 李超, 刘英波, 韩豫萍, 等.发射光谱法测定地球化学物料中的微量银锡硼[J].云南冶金, 2018, 47(3):84-88.

    Google Scholar

    Li C, Liu Y B, Han Y P, et al.The determination of trace amount silver, tin, boron in geochemical materials by emission spectrography[J].Yunnan Metallurgy, 2018, 47(3):84-88.

    Google Scholar

    [12] Roncevic S, Nemet I, Svedruzic L P, et al.Chemical vapour generation for tin determination in high-content calcium matrix by inductively coupled plasma atomic emission spectrometry[J].Croatica Chemica Acta, 2014, 87(1):17-22. doi: 10.5562/cca2259

    CrossRef Google Scholar

    [13] Afonso D D, Baytak S, Arslan Z.Simultaneous generation of hydrides of bismuth, lead and tin in the presence of ferricyanide and application to determination in biominerals by ICP-AES[J].Journal of Analytical Atomic Spectrometry, 2010, 25(5):726-729. doi: 10.1039/b920280c

    CrossRef Google Scholar

    [14] Uemoto M, Nagaoka M, Fujinuma H.Interlaboratory testing for the determination of trace amounts of tin and lead in magnesium and magnesium alloys by inductively coupled plasma atomic emission spectrometry[J].Analytical Sciences, 2009, 25(5):717-721. doi: 10.2116/analsci.25.717

    CrossRef Google Scholar

    [15] 陈安明.电感耦合等离子体原子发射光谱法测定碳钢及生铁中痕量砷锑铋锡铅[J].冶金分析, 2007, 27(3):68-70. doi: 10.3969/j.issn.1000-7571.2007.03.016

    CrossRef Google Scholar

    Chen A M.Determination of trace As, Sb, Bi, Sn and Pb in steel and pig iron by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2007, 27(3):68-70. doi: 10.3969/j.issn.1000-7571.2007.03.016

    CrossRef Google Scholar

    [16] Seco-Gesto E M, Moreda-Pineiro A, Bermejo-Barrera A, et al.Multi-element determination in raft mussels by fast microwave-assisted acid leaching and inductively coupled plasma-optical emission spectrometry[J].Talanta, 2007, 72(3):1178-1185. doi: 10.1016/j.talanta.2007.01.009

    CrossRef Google Scholar

    [17] 陈波, 胡兰, 陈园园, 等.地质样品中总锡测定方法的研究进展[J].理化检验(化学分册), 2017, 53(2):236-241.

    Google Scholar

    Chen B, Hu L, Chen Y Y, et al.Recent progress of research on methods for determination of total tin in geological samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(2):236-241.

    Google Scholar

    [18] 郝原芳, 刘新, 宋丽华, 等.电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡[J].岩矿测试, 2016, 35(4):378-383.

    Google Scholar

    Hao Y F, Liu X, Song L H, et al.Determination of trace cadmium and tin in lead alloys by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(4):378-383.

    Google Scholar

    [19] 罗艳, 杨侨.碱熔、分离沉淀-电感耦合等离子体质谱法快速测定地球化学样品中的锡[J].分析试验室, 2017, 36(7):827-830.

    Google Scholar

    Luo Y, Yang Q.Alkaline fusion, separate precipitation-inductively coupled plasma spectrometry and rapid measurement of tin from planet chemical samples[J].Chinese Journal of Analysis Laboratory, 2017, 36(7):827-830.

    Google Scholar

    [20] 侯艳霞, 刘庆彬, 胡净宇, 等.电感耦合等离子体质谱法测定锡粉基体的记忆效应研究[J].冶金分析, 2015, 35(12):1-4.

    Google Scholar

    Hou Y X, Liu Q B, Hu J Y, et al.Study on memory effect of tin powder matrix by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2015, 35(12):1-4.

    Google Scholar

    [21] 王铁, 亢德华, 于媛君.电感耦合等离子体质谱法测定锰铁中痕量铅锡锑[J].冶金分析, 2013, 33(5):13-16.

    Google Scholar

    Wang T, Kang D H, Yu Y J.Determination of trace lead, tin and antimony in ferromanganese by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2013, 33(5):13-16.

    Google Scholar

    [22] Hosick T J, Ingamells R L, Machemer S D.Determina-tion of tin in soil by continuous hydride generation and inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 456(2):263-269. doi: 10.1016/S0003-2670(02)00049-1

    CrossRef Google Scholar

    [23] Brügmann G, Berger D, Pernicka E.Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(3):437-448. doi: 10.1111/ggr.2017.41.issue-3

    CrossRef Google Scholar

    [24] Latkoczy C, Prohaska T, Stingeder G, et al.Simultaneous multi-element analysis of trace elements in soil samples by means of high-resolution inductively coupled plasma sector field mass spectrometry (SF-ICP-MS)[J].Fresenius Journal of Analytical Chemistry, 2000, 368(2-3):256-262. doi: 10.1007/s002160000432

    CrossRef Google Scholar

    [25] Duan H, Gong Z, Yang S.Online photochemical vapour generation of inorganic tin for inductively coupled plasma mass spectrometric detection[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2):410-416. doi: 10.1039/C4JA00249K

    CrossRef Google Scholar

    [26] 黄超冠, 蒙义舒, 郭焕花, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J].岩矿测试, 2018, 37(1):30-35.

    Google Scholar

    Huang C G, Meng Y S, Guo H H, et al.Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J].Rock and Mineral Analysis, 2018, 37(1):30-35.

    Google Scholar

    [27] 王凤祥.电感耦合等离子体原子发射光谱法测定锡矿石中锡[J].冶金分析, 2017, 37(11):59-63.

    Google Scholar

    Wang F X.Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(11):59-63.

    Google Scholar

    [28] 黎卫亮, 程秀花, 李忠煜, 等.碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J].岩矿测试, 2017, 36(5):468-473.

    Google Scholar

    Li W L, Cheng X H, Li Z Y, et al.Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J].Rock and Mineral Analysis, 2017, 36(5):468-473.

    Google Scholar

    [29] 刘艳花, 孙湘莉.莫桑比克某重砂矿选冶流程样品中钛和铬的联合测定[J].冶金分析, 2017, 37(7):37-44.

    Google Scholar

    Liu Y H, Sun X L.Combined determination of titanium and chromium in the samples from the flotation-metallurgy process of heavy placer in Mozambique[J].Metallurgical Analysis, 2017, 37(7):37-44.

    Google Scholar

    [30] 王小强, 夏辉, 秦九红, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J].岩矿测试, 2017, 36(1):52-58.

    Google Scholar

    Wang X Q, Xia H, Qin J H, et al.Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J].Rock and Mineral Analysis, 2017, 36(1):52-58.

    Google Scholar

    [31] 李冰, 杨红霞.电感耦合等离子体质谱原理和应用[M].北京:地质出版社, 2005.

    Google Scholar

    Li B, Yang H X.Principle and Application of Inductively Coupled Plasma-Mass Spectrometry[M].Beijing:Geological Publishing House, 2005.

    Google Scholar

    [32] 杨惠玲, 夏辉, 杜天军, 等.电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J].岩矿测试, 2013, 32(6):887-892.

    Google Scholar

    Yang H L, Xia H, Du T J, et al.Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(6):887-892.

    Google Scholar

    [33] 张雪梅, 张勤.发射光谱法测定勘查地球化学样品中银硼锡钼铅[J].岩矿测试, 2006, 25(4):323-326.

    Google Scholar

    Zhang X M, Zhang Q.Determination of silver, boron, tin, molybdenum and lead in geochemical exploration samples by emission spectrometry[J].Rock and Mineral Analysis, 2006, 25(4):323-326.

    Google Scholar

    [34] 杨小莉, 杨小丽, 李小丹, 等.敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J].岩矿测试, 2014, 33(3):321-326.

    Google Scholar

    Yang X L, Yang X L, Li X D, et al.Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):321-326.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(3519) PDF downloads(178) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint