Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 3
Article Contents

Zong-sheng ZHAO, Xiao-xue ZHAO, Xiao-xu JIANG, Lin-lin ZHAO, Lin-lin ZHANG. Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106
Citation: Zong-sheng ZHAO, Xiao-xue ZHAO, Xiao-xu JIANG, Lin-lin ZHAO, Lin-lin ZHANG. Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry

More Information
  • BACKGROUNDAtomic Fluorescence Spectrometry (AFS) has advantages of high sensitivity, simple structure and easy operation, but the digestion process of the standard analysis method for determination of Se in soil is cumbersome and readily produces interference. OBJECTIVESTo evaluate the applicability of Se determination in soil and sediment by water bath digestion/AFS, and uncover the main interference and elimination methods. METHODSBased on the standard method of GB/T 22105-2008, boiling water bath of aqua regina was used to digest Se in soil and sediment. Four treatments, including Fe3+, concentrated hydrochloric acid, Fe3+with concentrated hydrochloric acid, and water bath solution, were used to eliminate the interference of Cu2+ and Pb4+. RESULTSThe detection limit of Se by this method was 0.008mg/kg, the relative standard deviation of the test reference materials was 0.5%-11%, and the relative error was -16.3%-9.5%, better than the detection limit (0.01mg/kg), precision (0.79%-23.1%) and accuracy of the industry standard HJ 680-2013. CONCLUSIONSAccording to the experiment, it is proposed to add concentrated hydrochloric acid to the water bath digestion solution without adding thiourea-ascorbic acid. By increasing the acidity and Cl- concentration of the solution and keeping the concentration of hydrochloric acid in the sample higher than 23%, the reduction of Cu2+ to Cu0 and Pb4+ to form PbH4 can be inhibited. The negative interference of Cu and the positive interference of Pb are effectively reduced, and the precision and accuracy of Se measured by AFS are improved.
  • 加载中
  • [1] 吕莉, 李源, 井美娇, 等.氢化物发生-原子荧光光谱法测定三种鸡蛋中硒含量的研究[J].光谱学与光谱分析, 2019, 39(2):607-611.

    Google Scholar

    Lü L, Li Y, Jing M J, et al.Determination of selenium in three kinds of eggs by hydride generation atomic fluorescence spectrometry[J].Spectroscopy and Spctral Analysis, 2019, 39(2):607-611.

    Google Scholar

    [2] 李杰, 刘久臣, 汤奇峰, 等.川西高原地区水体中硒含量及分布特征研究[J].岩矿测试, 2018, 37(2):183-192.

    Google Scholar

    Li J, Liu J C, Tang Q F, et al.Study of the contents and distribution of selenium in water samples from the Western Sichuan plateau and the incidence of Kaschin Beck disease[J].Rock and Mineral Analysis, 2018, 37(2):183-192.

    Google Scholar

    [3] 李刚, 胡斯宪, 陈琳玲.原子荧光光谱分析技术的创新与发展[J].岩矿测试, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    CrossRef Google Scholar

    Li G, Hu S X, Chen L L.Innovation and development for AFS analysis[J].Rock and Mineral Analysis, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    CrossRef Google Scholar

    [4] 钱薇, 唐昊冶, 王如海, 等.一次消解土壤样品测定汞、砷和硒[J].分析化学, 2017, 45(8):1215-1221.

    Google Scholar

    Qian W, Tang H Y, Wang R H, et al.Determination of mercury, arsenic and selenium in soils by one-time digestion[J].Chinese Journal of Analytical Chemistry, 2017, 45(8):1215-1221.

    Google Scholar

    [5] 李自强, 胡斯宪, 李小英, 等.水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J].理化检验(化学分册), 2018, 54(4):480-483.

    Google Scholar

    Li Z Q, Hu S X, Li X Y, et al.Determination of As and Hg in survey samples of soil pollution by HG-AFS with water bath extraction[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4):480-483.

    Google Scholar

    [6] 杨常青, 张双双, 吴楠, 等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试, 2016, 35(5):481-487.

    Google Scholar

    Yang C Q, Zhang S S, Wu N, et al.Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-HGAFS[J].Rock and Mineral Analysis, 2016, 35(5):481-487.

    Google Scholar

    [7] 刘阁, 李清昌.氢化物原子荧光法同时测定土壤样品中砷锑[J].有色矿冶, 2013, 29(5):62-64. doi: 10.3969/j.issn.1007-967X.2013.05.019

    CrossRef Google Scholar

    Liu G, Li Q C.HG-AFS determination of arsenic and antimony in soil[J].Non-Ferrous Mining and Metallurgy, 2013, 29(5):62-64. doi: 10.3969/j.issn.1007-967X.2013.05.019

    CrossRef Google Scholar

    [8] 徐国栋, 葛建华, 贾慧娴, 等.水浴浸提-氢化物发生-原子荧光光谱法同时测定地质样品中痕量砷和汞[J].岩矿测试, 2010, 29(4):391-394. doi: 10.3969/j.issn.0254-5357.2010.04.014

    CrossRef Google Scholar

    Xu G D, Ge J H, Jia H X, et al.Simultaneous determination of trace arsenic and mercury in geological samples by HG-AFS with water bath soaking sample preparation[J].Rock and Mineral Analysis, 2010, 29(4):391-394. doi: 10.3969/j.issn.0254-5357.2010.04.014

    CrossRef Google Scholar

    [9] 赵振平, 张怀成, 冷家峰, 等.王水消解蒸气发生-原子荧光光谱法测定土壤中的砷、锑和汞[J].中国环境监测, 2004, 20(1):44-46. doi: 10.3969/j.issn.1002-6002.2004.01.014

    CrossRef Google Scholar

    Zhao Z P, Zhang H C, Leng J F, et al.The method of VG-AFS with clearing by aqua regia to determine As, Sb and Hg in the soil[J].Environmental Monitoring of China, 2004, 20(1):44-46. doi: 10.3969/j.issn.1002-6002.2004.01.014

    CrossRef Google Scholar

    [10] 李彩虹, 杨春霞, 赵银宝.氢化物发生-原子荧光法测定土壤中砷、汞的方法[J].西北农业学报, 2013, 22(7):200-204.

    Google Scholar

    Li C H, Yang C X, Zhao Y B.Determination of As and Hg in soil by HG-AFS[J].Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(7):200-204.

    Google Scholar

    [11] 李艳, 程永毅, 陈可雅, 等.王水加辅助酸微波消解-原子荧光法测定土壤砷、硒[J].西南大学学报(自然科学版), 2016, 38(11):155-160.

    Google Scholar

    Li Y, Cheng Y Y, Chen K Y, et al.Determination of soil arsenic and selenium by atomic fluorescence under microwave digestion with aqua regia plus assisted acid[J].Journal of Southwest University(Natural Science Edition), 2016, 38(11):155-160.

    Google Scholar

    [12] 苏文峰, 李刚.焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒[J].岩矿测试, 2008, 27(2):120-122. doi: 10.3969/j.issn.0254-5357.2008.02.010

    CrossRef Google Scholar

    Su W F, Li G.Determination of trace selenium in soil samples by HG-AFS with baking separation[J].Rock and Mineral Analysis, 2008, 27(2):120-122. doi: 10.3969/j.issn.0254-5357.2008.02.010

    CrossRef Google Scholar

    [13] 张锦茂, 范凡, 任萍.氢化物-原子荧光法测定岩石中痕量硒的干扰及消除[J].岩矿测试, 1993, 12(4):264-267.

    Google Scholar

    Zhang J M, Fan F, Ren P.Elimination of interference in the determination of selenium in rocks by HG-AFS[J].Rock and Mineral Analysis, 1993, 12(4):264-267.

    Google Scholar

    [14] 徐宝玲.氢化物-原子荧光法测定硒时元素的干扰及其消除[J].分析化学, 1985, 13(1):29-33.

    Google Scholar

    Xu B L.Interference of elements and its elimination in HG-AFS determination of selenium[J].Chinese Journal of Analytical Chemistry, 1985, 13(1):29-33.

    Google Scholar

    [15] 王丹君.原子荧光光谱法测定土壤中的硒[J].理化检验(化学分册), 2014, 50(7):914-915.

    Google Scholar

    Wang D J.Determination of selenium in soil with AFS[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(7):914-915.

    Google Scholar

    [16] 陈志兵.碱性模式氢化物发生-原子荧光光谱法测定土壤中的痕量硒[J].岩矿测试, 2002, 21(4):311-314. doi: 10.3969/j.issn.0254-5357.2002.04.015

    CrossRef Google Scholar

    Chen Z B.Determination of trace selenium in soils by HG-AFS in alkaline mode[J].Rock and Mineral Analysis, 2002, 21(4):311-314. doi: 10.3969/j.issn.0254-5357.2002.04.015

    CrossRef Google Scholar

    [17] 邵建辉.原子荧光法测定土壤中痕量硒元素[J].现代化工, 2015, 35(5):177-178.

    Google Scholar

    Shao J H.Determination of trace selenium in soil by AFS[J].Modern Chemical Industry, 2015, 35(5):177-178.

    Google Scholar

    [18] 陶秋丽, 韩张雄, 熊英, 等.微波消解-氢化物发生原子荧光光谱法测定粉煤灰中的硒[J].岩矿测试, 2013, 32(3):445-448. doi: 10.3969/j.issn.0254-5357.2013.03.016

    CrossRef Google Scholar

    Tao Q L, Han Z X, Xiong Y, et al.Determination of selenium in coal ash with microwave digestion and HG-AFS[J].Rock and Mineral Analysis, 2013, 32(3):445-448. doi: 10.3969/j.issn.0254-5357.2013.03.016

    CrossRef Google Scholar

    [19] 郭小伟, 张文琴, 杨密云.氢化物-无色散原子荧光法测定地质样品中微量硒及碲[J].岩石矿物及测试, 1983, 2(4):288-292.

    Google Scholar

    Guo X W, Zhang W Q, Yang M Y.Determination of trace amount of selenium and tellurium in geological samples by HG-AFS[J].Acta Petrologica Mineralogica et Analytica, 1983, 2(4):288-292.

    Google Scholar

    [20] 薛超群, 郭敏.氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J].岩矿测试, 2012, 31(6):980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

    CrossRef Google Scholar

    Xue C Q, Guo M.Analysis of different valence states of selenium in geological samples by HG-AFS[J].Rock and Mineral Analysis, 2012, 31(6):980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

    CrossRef Google Scholar

    [21] 张洁, 阳国运.树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J].岩矿测试, 2018, 37(6):657-663.

    Google Scholar

    Zhang J, Yang G Y.Determination of tungsten, molybdenum, tin, germanium, selenium and tellurium in lead-zinc ore by ICP-MS with resin exchange separation[J].Rock and Mineral Analysis, 2018, 37(6):657-663.

    Google Scholar

    [22] 莫永涛, 王琦, 谢意南, 等.水浴消解-原子荧光法同时测定沉积物中锑与硒[J].广东化工, 2015, 42(7):167-169. doi: 10.3969/j.issn.1007-1865.2015.07.083

    CrossRef Google Scholar

    Mo Y T, Wang Q, Xie Y N, et al.Simultaneous determination of antimony and selenium in the sediment by nitromurlatic acid water bath diggestion-AFS[J].Guangdong Chemical Industry, 2015, 42(7):167-169. doi: 10.3969/j.issn.1007-1865.2015.07.083

    CrossRef Google Scholar

    [23] 刘明钟, 汤志勇, 刘霁欣, 等.原子荧光光谱分析[M].北京:化学工业出版社, 2007:229-233.

    Google Scholar

    Liu M Z, Tang Z Y, Liu J X, et al.Analysis by AFS[M].Beijing:Chemical Industry Press, 2007:229-233.

    Google Scholar

    [24] 张立新, 陈志勇, 周新青.氢化物发生原子荧光法在测定土壤中浸出硒、总硒的应用[J].中国环境监测, 2006, 22(2):29-31. doi: 10.3969/j.issn.1002-6002.2006.02.009

    CrossRef Google Scholar

    Zhang L X, Chen Z Y, Zhou X Q.Determination of trace selenium in soil by HG-AFS[J].Environmental Monitoring of China, 2006, 22(2):29-31. doi: 10.3969/j.issn.1002-6002.2006.02.009

    CrossRef Google Scholar

    [25] 陶琛, 李春生, 初威澄, 等.非色散原子荧光光谱法同时检测硒和铅的光源干扰校正方法研究[J].分析化学, 2019, 47(1):163-168.

    Google Scholar

    Tao C, Li C S, Chu W C, et al.Correction method of light source interference for simultaneous determination of selenium and lead by non-dispersive hydride generation-atomic fluorescence spectrometry[J].Chinese Journal of Analytical Chemistry, 2019, 47(1):163-168.

    Google Scholar

    [26] 陈曦, 赵伯燕, 陈艳梅, 等.不同介质对氢化物发生原子荧光光谱法测定硒的影响[J].微量元素与健康研究, 2012, 29(5):2.

    Google Scholar

    Chen X, Zhao B Y, Chen Y M, et al.Effect of different media on determination of selenium by HG-AFS[J].Studies of Trace Elements and Health, 2012, 29(5):2.

    Google Scholar

    [27] 戴亚明.铅的氢化物发生机理研究及钢铁中痕量铅的测定[J].理化检验(化学分册), 2005, 41(10):712-717.

    Google Scholar

    Dai Y M.HG-AFS determination of trace amounts of lead in iron and steel[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(10):712-717.

    Google Scholar

    [28] 李俊义, 徐书绅, 张渔夫, 等.分析化学[M].北京:高等教育出版社, 1984:602-605, 629-646.

    Google Scholar

    Li J Y, Xu S S, Zhang Y F, et al.Analytical Chemistry[M].Beijing:Higher Education Press, 1984:602-605, 629-646.

    Google Scholar

    [29] 李倩, 张宝, 申文前, 等.硒酸泥制备粗硒新工艺[J].中南大学学报(自然科学版), 2011, 42(8):2209-2214.

    Google Scholar

    Li Q, Zhang B, Shen W Q, et al.Novel technology for preparation of crude Se from selenium acid mud[J].Journal of Central South University (Science and Technology), 2011, 42(8):2209-2214.

    Google Scholar

    [30] 李小芳, 冯小强, 章志典, 等.羧甲基壳聚糖软模板法制备纳米硒[J].材料科学与工程学报, 2013, 31(6):886-890. doi: 10.3969/j.issn.1673-2812.2013.06.023

    CrossRef Google Scholar

    Li X F, Feng X Q, Zhang Z D, et al.Preparation of nano-selenium using carboxymethyl chitosan as template[J].Journal of Materials Science and Engineering, 2013, 31(6):886-890. doi: 10.3969/j.issn.1673-2812.2013.06.023

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(3221) PDF downloads(243) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint