Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 3
Article Contents

Xi-feng LIU, Yu-heng JIA, Yan LIU. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072
Citation: Xi-feng LIU, Yu-heng JIA, Yan LIU. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072

Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang

More Information
  • BACKGROUNDThe Hetian nephrite belt is the longest nephrite belt in the world at 1300km. In addition to the traditional primary and placer nephrite, there is widespread Gobi nephrite in the Gobi desert of the Quoqiang district in Xinjiang. OBJECTIVESTo identify the origin, genesis, ages and types of Gobi nephrite. METHODSElectronic Microprobe, X-ray Fluorescence, Inductively Coupled Plasma-Mass Spectrometry and sensitive high-resolution Ion Microprobe were used to examine the mineral assemblages, chemical composition and ages of Gobi nephrite. Based on these analyses, the genesis of Gobi nephrite was constrained. RESULTSGobi nephrite was predominantly composed of tremolite (>95%) with minor apatite, diopside, epidote and chromite (< 5%). The color of Gobi nephrite was mainly dark green, green, yellow-green and white. The samples, with the exception of white, were related to the FeO content (0.48%-2.92%). The whole rock analysis suggested that both Gobi nephrite and tremolite had a similar chemical composition. All samples displayed LREE enrichment, flat HREE and negative Eu anomaly (δEu=0.09-0.66). Totally, all these samples had low content of REE (6.93-115.93μg/g), Cr (68.8-119μg/g), and Ni (16.4-38.8μg/g). δD (-24.94‰--56.83‰) of ore-forming fluids indicated that it was composed of magmatic water and meteoric water. SHRIMP U-Pb dating of zircons showed that there were four groups of ages:40-60Ma, 480Ma, 785Ma and 1450-2460Ma. These ages could be used to constrain the formation ages of Gobi nephrite. CONCLUSIONSThe geochemistry and ore-forming fluid composition of the Gobi nephrite is similar to the composition of nephrite in the typical Mg-skarn deposit previously reported. The ore-forming age of 400Ma is consistent with the mineralization age of most of the reported ages in the Hetian areas. The multiple age groups also indicate multi-stage mineralization of nephrite.
  • 加载中
  • [1] Simandl G J, Riveros C P, Schiarizza P.Nephrite (Jade) Deposits, Mount Ogden Area, Central British Columbia (NTS 093N 13W)[R].British Columbia Geology Survey, 1999: 339-347.

    Google Scholar

    [2] Makepeace K, Simandl G J.Jade (Nephrite) in British Columbia, Canada[R].Program and Extended Abstracts for 37th Forum on the Geology of Indutrial Minerals, 2001: 209-210.

    Google Scholar

    [3] Łapot W.Peculiar nephrite from the East Saian Mts (Siberia)[J].Mineralogia Polonica, 2004, 35:49-58.

    Google Scholar

    [4] Yui T F, Kwon S T.Origin of a dolomite-related jade deposit at Chuncheon, Korea[J].Economic Geology, 2002, 97:593-601. doi: 10.2113/gsecongeo.97.3.593

    CrossRef Google Scholar

    [5] Harlow G E, Sorensen S S.Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47:113-146. doi: 10.2747/0020-6814.47.2.113

    CrossRef Google Scholar

    [6] Liu Y, Deng J, Shi G H, et al.Chemical zone of nephrite in Almas, Xinjiang, China[J].Resource Geology, 2010, 60:249-259. doi: 10.1111/rge.2010.60.issue-3

    CrossRef Google Scholar

    [7] Liu Y, Deng J, Shi G H, et al.Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Journal of Asian Earth Sciences, 2011, 42:440-451. doi: 10.1016/j.jseaes.2011.05.012

    CrossRef Google Scholar

    [8] Liu Y, Deng J, Shi G H, et al.Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang[J].Ore Geology Reviews, 2011, 41:122-132. doi: 10.1016/j.oregeorev.2011.07.004

    CrossRef Google Scholar

    [9] 于海燕, 阮青锋, 孙媛, 等.不同颜色青海软玉微观形貌和矿物组成特征[J].岩矿测试, 2018, 37(6):626-636.

    Google Scholar

    Yu H Y, Ruan Q F, Sun Y, et al.Micro-morphology and mineral composition of different color Qinghai nephrites[J].Rock and Mineral Analysis, 2018, 37(6):626-636.

    Google Scholar

    [10] Ling X X, Schmädicke E, Li Q L, et al.Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite:A case study of the nephrite deposit from Luanchuan, Henan, China[J].Lithos, 2015, 220-223:289-299. doi: 10.1016/j.lithos.2015.02.019

    CrossRef Google Scholar

    [11] Middleton A.JADE-Geology and Mineralogy[M]//O'Donoghue M.Gems.Oxford: Elsevier, 2006: 332-354.

    Google Scholar

    [12] 张蓓莉.系统宝石学[M].北京:地质出版社, 2006:365-374.

    Google Scholar

    Zhang B L.Systematic Gemmology[M].Beijing:Geological Publishing House, 2006:365-374.

    Google Scholar

    [13] 买托乎提·阿不都瓦衣提.和田玉戈壁料与仿戈壁料鉴定方法探讨[C]//中国珠宝首饰学术交流会论文集.北京: 中国珠宝玉石首饰行业协会, 2009: 157-159.

    Google Scholar

    Abuduwayiti M.Hetian Nephrite Occurring In the Gobi Desert and Their Imitation[C]//Proceedings of China Gems and Jewelry Academic Conference.Beijing: China Jewelry and Jade Jewelry Industry Association, 2009: 157-159.

    Google Scholar

    [14] Friedman I.Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4:89-103. doi: 10.1016/0016-7037(53)90066-0

    CrossRef Google Scholar

    [15] Black L P, Kamo S L, Allen C M, et al.TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology[J].Chemical Geology, 2003, 200(1):155-170.

    Google Scholar

    [16] Nasdala L, Hofmeister W, Norberg N, et al.Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32(3):247-265. doi: 10.1111/ggr.2008.32.issue-3

    CrossRef Google Scholar

    [17] Compston W, Williams I S, Kirschvink J L, et al.Zircon U-Pb ages forthe Early Cambrian time-scale[J].Journal of the Geological Society, 1992, 149:171-184. doi: 10.1144/gsjgs.149.2.0171

    CrossRef Google Scholar

    [18] Stern R A.High-resolution SIMS Determination of Ra-diogenic Tracer-Isotope Ratios in Minerals[C]//Cabri L J, Vaughan D J.Modern Approaches to Ore and Environmental Mineralogy.Mineralogical Association of Canada, 1998: 241-268.

    Google Scholar

    [19] Ludwig K R.Squid 1.02: A User's Manual[M].Berkeley Geochronology Center Special Publication, 2001: 1-21.

    Google Scholar

    [20] Ludwig K R.User's Manual for Isoplot 3.00: A Geo-chronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center Special Publication, 2003.

    Google Scholar

    [21] Liu Y, Zhang R Q, Zhang Z Y, et al.Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215:128-144. doi: 10.1016/j.lithos.2014.11.002

    CrossRef Google Scholar

    [22] Liu Y, Zhang R Q, Abuduwayiti M, et al.SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72:699-727. doi: 10.1016/j.oregeorev.2015.08.023

    CrossRef Google Scholar

    [23] Douglas J G.The study of Chinese archaic jades using non-destructive X-ray fluorescence spectroscopy[J].Acta Geologica Taiwanica, 1996, 32:43-54.

    Google Scholar

    [24] Douglas J G.Exploring Issues of Geological Source for Jade Worked by Ancient Chinese Cultures with the Aid of X-ray Fluorescence[C]//Jett P.Scientific Study in the Field of Asian Art.London: Archetype Publications Ltd, 2003: 192-199.

    Google Scholar

    [25] 刘喜锋, 刘琰, 李自静, 等.新疆皮山镁质矽卡岩矿床(含糖玉)成因及锆石SHRIMP U-Pb定年[J].岩石矿物学杂志, 2017, 36(2):259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

    CrossRef Google Scholar

    Liu X F, Liu Y, Li Z J, et al.The genesis of Mg-skarn deposit (bearing brown nephrite) and its Ar-Ar dating of phlogopite and SHRIMP U-Pb dating of zircon, Pishan, Xinjiang[J].Acta Petrologica et Mineralogica, 2017, 36(2):259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

    CrossRef Google Scholar

    [26] Ohmoto H.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy and Geochemistry, 1986, 16(1):491-559.

    Google Scholar

    [27] 张勇, 魏华, 陆太进, 等.新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J].岩矿测试, 2018, 37(6):695-704.

    Google Scholar

    Zhang Y, Wei H, Lu T J, et al.The genesis and LA-ICP-MS zircon ages of Omixia nephrite deposit, Xinjiang, China[J].Rock and Mineral Analysis, 2018, 37(6):695-704.

    Google Scholar

    [28] Siqin B, Qian R, Zhuo S, et al.Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309:206-211. doi: 10.1016/j.ijms.2011.10.003

    CrossRef Google Scholar

    [29] Grapes R H, Yun S T.Geochemistry of a New Zealand nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53:413-426. doi: 10.1080/00288306.2010.514929

    CrossRef Google Scholar

    [30] Kostov R I, Protochristov C, Stoyanov C, et al.Micro-PIXE geochemical fingerprinting of nephrite neolithic artifacts from Southwest Bulgaria[J].Geoarchaeology, 2012, 27:457-469. doi: 10.1002/gea.21417

    CrossRef Google Scholar

    [31] Adamo I, Bocchio R.Nephrite jade from Val Malenco, Italy:Review and update[J].Gems and Gemology, 2013, 49:98-106.

    Google Scholar

    [32] Bhattacharya A, Raith M, Hoernes S, et al.Geochemical evolution of the massif-type anorthosite complex at Bolangir in the Eastern Ghats belt of India[J].Journal of Petrology, 1998, 39(6):1169-1195. doi: 10.1093/petroj/39.6.1169

    CrossRef Google Scholar

    [33] James O B, Floss C, McGee J J.Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in Lunar ferroan anorthosites[J].Geochimica et Cosmochimica Acta, 2002, 66(7):1269-1284. doi: 10.1016/S0016-7037(01)00772-4

    CrossRef Google Scholar

    [34] Charlier B, Auwera J V, Duchesne J C.Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S.Norway):Part Ⅱ.REE and the trapped liquid fraction[J].Lithos, 2005, 83(3):255-276.

    Google Scholar

    [35] 刘喜锋, 张红清, 刘琰, 等.世界范围内代表性碧玉的矿物特征和成因研究[J].岩矿测试, 2018, 37(5):479-489.

    Google Scholar

    Liu X F, Zhang H Q, Liu Y, et al.Mineralogical characteristics and genesis of green nephrite from the world[J].Rock and Mineral Analysis, 2018, 37(5):479-489.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(3358) PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint