Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 3
Article Contents

SHI Kai, ZHU Jian-ming, WU Guang-liang, WANG Jing, ZENG Li. A Review on the Progress of Purification Techniques for High Precision Determination of Cr Isotopes in Geological Samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059
Citation: SHI Kai, ZHU Jian-ming, WU Guang-liang, WANG Jing, ZENG Li. A Review on the Progress of Purification Techniques for High Precision Determination of Cr Isotopes in Geological Samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059

A Review on the Progress of Purification Techniques for High Precision Determination of Cr Isotopes in Geological Samples

More Information
  • BACKGROUND

    With the development of Multi-collector Thermal Ionization Mass Spectrometry (MC-TIMS) and Multi-collector Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS), Cr isotopes had been successfully measured at a high resolution. Chromium isotopes have shown good application potential in the fields of environmental geochemistry, agroecology and cosmochemistry. However, sample purification and interference correction are still the main factors that suppress the high-resolution measurement of Cr isotopes. The development of a high-recovery, universal and efficient separation and purification method is an urgent problem to be solved.

    OBJECTIVES

    To discuss the purification of Cr isotopes in geological and environmental samples, interference and mass discrimination correction during measurement of MC-ICP-MS.

    METHODS

    This study compared and analyzed the current chemical separation and purification methods and main instrumental analysis techniques commonly used for chromium isotopes (e.g. MC-ICP-MS), and discussed the current mainstream quality discrimination correction methods. The combination of anion and cation exchange resin with strong oxidants such as K2S2O8 can effectively separate Cr from low Cr samples with high matrix contents, which is a more universal purification method. Medium-high resolution and static measurement mode was used during MC-ICP-MS analysis and Cr isotopes double spike method to correct mass discrimination effect.

    RESULTS

    The analytical precision of δ53/52Cr was 0.04‰ (2SD), similar to that of TIMS. Moreover, the minimum analytical sample was 10ng, thus isotope analysis of ultra-micro chromium can be achieved.

    CONCLUSIONS

    The proposed method cannot only separate the polyatomic ion interference, but can also perform high-precision Cr isotope analysis. It is necessary to reduce the process blank, remove the interfering elements and completely separate the different forms of chromium.

  • 加载中
  • [1] Ellis A S, Johnson T M, Bullen T D.Chromium isotopes and the fate of hexavalent chromium in the environment[J].Science, 2002, 295(5562):2060-2062. doi: 10.1126/science.1068368

    CrossRef Google Scholar

    [2] Frei R, Gaucher C, Poulton S W, et al.Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J].Nature, 2009, 461(7261):250-253. doi: 10.1038/nature08266

    CrossRef Google Scholar

    [3] Unceta N, Séby F, Malherbe J, et al.Chromium speciation in solid matrices and regulation:A review[J].Analytical & Bioanalytical Chemistry, 2010, 397(3):1097-1111.

    Google Scholar

    [4] Birck J L, Allègre C J.Manganese-chromium isotope systematics and the development of the early Solar system[J].Nature, 1988, 331(6157):579-584. doi: 10.1038/331579a0

    CrossRef Google Scholar

    [5] Lugmair G W, Shukolyukov A.Early Solar system timescales according to 53Mn-53Cr systematics[J].Geochimica et Cosmochimica Acta, 1998, 62(16):2863-2886. doi: 10.1016/S0016-7037(98)00189-6

    CrossRef Google Scholar

    [6] Moynier F, Yin Q Z, Schauble E.Isotopic evidence of Cr partitioning into Earth's core[J].Science, 2011, 331(6023):1417-1420. doi: 10.1126/science.1199597

    CrossRef Google Scholar

    [7] Bonnand P, Williams H M, Parkinson I J, et al.Stable chromium isotopic composition of meteorites and metal-silicate experiments:Implications for fractionation during core formation[J].Earth & Planetary Science Letters, 2016, 435(1):14-21.

    Google Scholar

    [8] Berry A J, O'Neill H S C, Scott D R, et al.The effect of composition on Cr2+/Cr3+ in silicate melts[J].American Mineralogist, 2006, 91(11-12):1901-1908. doi: 10.2138/am.2006.2097

    CrossRef Google Scholar

    [9] Larsen K K, Wielandt D, Schiller M, et al.Chromatographic speciation of Cr(Ⅲ)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J].Journal of Chromatography A, 2016, 1443:162-174. doi: 10.1016/j.chroma.2016.03.040

    CrossRef Google Scholar

    [10] Schauble E, Rossman G R, Jr H P T.Theoretical estimates of equilibrium chromium-isotope fractionations[J].Chemical Geology, 2004, 205(1-2):99-114. doi: 10.1016/j.chemgeo.2003.12.015

    CrossRef Google Scholar

    [11] Kotaś J, Stasicka Z.Chromium occurrence in the envir-onment and methods of its speciation[J].Environmental Pollution, 2000, 107(3):263-283. doi: 10.1016/S0269-7491(99)00168-2

    CrossRef Google Scholar

    [12] Bonnand P, James R H, Parkinson I J, et al.The chromium isotopic composition of seawater and marine carbonates[J].Earth & Planetary Science Letters, 2013, 382(6):10-20.

    Google Scholar

    [13] Berger A, Frei R.The fate of chromium during tropical weathering:A laterite profile from Central Madagascar[J].Geoderma, 2014, 213(1):521-532.

    Google Scholar

    [14] Saad E M, Wang X L, lanavsky N J, et al.Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution[J].Nature Communications, 2017.DOI:10.1038/s41467-017-01694-y.

    CrossRef Google Scholar

    [15] 赵堃, 柴立元, 王云燕, 等.水环境中铬的存在形态及迁移转化规律[J].工业安全与环保, 2006, 32(8):1-3. doi: 10.3969/j.issn.1001-425X.2006.08.001

    CrossRef Google Scholar

    Zhao K, Chai L Y, Wang Y Y, et al.The existing form, migration and transformation laws of Cr in water environment[J].Industrial Safety and Environmental Protection, 2006, 32(8):1-3. doi: 10.3969/j.issn.1001-425X.2006.08.001

    CrossRef Google Scholar

    [16] Zink S, Schoenberg R, Staubwasser M.Isotopic fractionation and reaction kinetics between Cr(Ⅲ) and Cr(Ⅵ) in aqueous media[J].Geochimica et Cosmochimica Acta, 2010, 74(20):5729-5745. doi: 10.1016/j.gca.2010.07.015

    CrossRef Google Scholar

    [17] Rossman K J R, Taylor P D P.Isotopic composition of the elements 1997[J].Pure and Applied Chemistry, 1998, 70:217-236. doi: 10.1351/pac199870010217

    CrossRef Google Scholar

    [18] Ball J W, Bassett R L.Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis[J].Chemical Geology, 2000, 168(1-2):123-134. doi: 10.1016/S0009-2541(00)00189-3

    CrossRef Google Scholar

    [19] Frei R, Rosing M T.Search for traces of the late heavy bombardment on Earth-Results from high precision chromium isotopes[J].Earth & Planetary Science Letters, 2005, 236(1):28-40.

    Google Scholar

    [20] Farkas J, Chrastny V, Novak M, et al.Chromium isotope variations (delta Cr-53/52) in mantle-derived sources and their weathering products:Implications for environmental studies and the evolution of delta Cr-53/52 in the Earth's mantle over geologic time[J].Geochimica et Cosmochimica Acta, 2013, 123:74-92. doi: 10.1016/j.gca.2013.08.016

    CrossRef Google Scholar

    [21] Economou-Eliopoulos M, Frei R, Atsarou C.Application of chromium stable isotopes to the evaluation of Cr(Ⅵ) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece)[J].Catena, 2014, 122(10):216-228.

    Google Scholar

    [22] Trinquier A, Birck J L, Allègre C J.High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2008, 23(12):1565-1574. doi: 10.1039/b809755k

    CrossRef Google Scholar

    [23] Schoenberg R, Zink S, Staubwasser M, et al.The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS[J].Chemical Geology, 2008, 249(3-4):294-306. doi: 10.1016/j.chemgeo.2008.01.009

    CrossRef Google Scholar

    [24] Yamakawa A, Yamashita K, Makishima A, et al.Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry[J].Analytical Chemistry, 2009, 81(23):9787-9794. doi: 10.1021/ac901762a

    CrossRef Google Scholar

    [25] Qin L, Alexander C M O, Carlson R W, et al.Contributors to chromium isotope variation of meteorites[J].Geochimica et Cosmochimica Acta, 2010, 74(3):1122-1145. doi: 10.1016/j.gca.2009.11.005

    CrossRef Google Scholar

    [26] Døssing L N, Dideriksen K, Stipp S L S, et al.Reduction of hexavalent chromium by ferrous iron:A process of chromium isotope fractionation and its relevance to natural environments[J].Chemical Geology, 2011, 285(1-4):157-166. doi: 10.1016/j.chemgeo.2011.04.005

    CrossRef Google Scholar

    [27] Bonnand P, Parkinson I J, James R H, et al.Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2011, 26(3):528-535. doi: 10.1039/c0ja00167h

    CrossRef Google Scholar

    [28] Jamieson-Hanes J H, Gibson B D, Lindsay M B, et al.Chromium isotope fractionation during reduction of Cr(Ⅵ) under saturated flow conditions[J].Environmental Science & Technology, 2012, 46(12):6783-6789.

    Google Scholar

    [29] Kitchen J W, Johnson T M, Bullen T D, et al.Chromium isotope fractionation factors for reduction of Cr(Ⅵ) by aqueous Fe(Ⅱ) and organic molecules[J].Geochimica et Cosmochimica Acta, 2012, 89(4):190-201.

    Google Scholar

    [30] Schiller M, Kooten E V, Holst J C, et al.Precise mea-surement of chromium isotopes by MC-ICPMS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(8):1406-1416. doi: 10.1039/C4JA00018H

    CrossRef Google Scholar

    [31] Rodler A, Sánchez-Pastor N, Fernández-Díaz L, et al.Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate:Implications for their use as paleoclimatic proxy[J].Geochimica et Cosmochimica Acta, 2015, 164(4):221-235.

    Google Scholar

    [32] Wang X L, Johnson T M, Ellis A S.Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(Ⅲ) and Cr(Ⅵ)[J].Geochimica et Cosmochimica Acta, 2015, 153:72-90. doi: 10.1016/j.gca.2015.01.003

    CrossRef Google Scholar

    [33] Davies C M.Determination of Distribution Coefficients for Cation Exchange Resin and Optimisation of Ion Exchange Chromatography for Chromium Separation for Geological Materials[D].Manchester: University of Manchester, 2012: 102.

    Google Scholar

    [34] Li C F, Feng L J, Wang X C, et al.Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J].Journal of Analytical Atomic Spectrometry, 2016, 31(12):2375-2383. doi: 10.1039/C6JA00265J

    CrossRef Google Scholar

    [35] Zhu J M, Wu G, Wang X, et al.An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2018, 33:809-821. doi: 10.1039/C8JA00033F

    CrossRef Google Scholar

    [36] Shields W R, Murphy T J, Catanzaro E J, et al.Absolute isotopic abundance ratios and atomic weight of a reference sample of chromium[J].Journal of Research of the National Bureau, 1966, 70:193-197.

    Google Scholar

    [37] Lee T, Tera F.The meteoritic chromium isotopic compo-sition and limits for radioactive 53Mn in the early Solar system[J].Geochimica et Cosmochimica Acta, 1986, 50(2):199-206. doi: 10.1016/0016-7037(86)90169-9

    CrossRef Google Scholar

    [38] Ellis A S, Johnson T M, Bullen T D.Using chromium stable isotope ratios to quantify Cr(Ⅵ) reduction:Lack of sorption effects[J].Environmental Science & Technology, 2004, 38(13):3604-3607.

    Google Scholar

    [39] Fantle M S, Bullen T D.Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry[J].Chemical Geology, 2009, 258(1):50-64.

    Google Scholar

    [40] 秦礼萍.铬同位素分析技术与应用[C]//全国同位素地质新技术新方法与应用学术讨论会.北京: 中国地质学会同位素地质专业委员会, 2012.

    Google Scholar

    Qin L P.Analysis Technology and Application of Chromium Isotope[C]//National Symposium on New Technologies and Methods for Isotope Geology.Beijing: Isotope Geology Committee, Geological Society of China, 2012.

    Google Scholar

    [41] Sikora E R, Johnson T M, Bullen T D.Microbial mass-dependent fractionation of chromium isotopes[J].Geochimica et Cosmochimica Acta, 2008, 72(15):3631-3641. doi: 10.1016/j.gca.2008.05.051

    CrossRef Google Scholar

    [42] Schoenberg R, Merdian A, Holmden C, et al.The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J].Geochimica et Cosmochimica Acta, 2016, 183:14-30. doi: 10.1016/j.gca.2016.03.013

    CrossRef Google Scholar

    [43] Bonnand P, Parkinson I J, Anand M.Mass dependent fractionation of stable chromium isotopes in mare basalts:Implications for the formation and the differentiation of the Moon[J].Geochimica et Cosmochimica Acta, 2016, 175(20):208-221.

    Google Scholar

    [44] Wang X L, Planavsky N J, Hull P M, et al.Chromium isotopic composition of core-top planktonic foraminifera[J].Geobiology, 2016:1-14.

    Google Scholar

    [45] Woodhead J D, Hergt J M.Application of the 'double spike' technique to Pb-isotope geochronology[J].Chemical Geology, 1997, 138(3-4):311-321. doi: 10.1016/S0009-2541(97)00013-2

    CrossRef Google Scholar

    [46] Habfast K.Fractionation correction and multiple collectors in thermal ionization isotope ratio mass spectrometry[J].International Journal of Mass Spectrometry, 1998, 176(1):133-148.

    Google Scholar

    [47] 袁永海, 杨锋, 余红霞, 等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试, 2018, 37(4):356-363.

    Google Scholar

    Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2018, 37(4):356-363.

    Google Scholar

    [48] Albarede F, Beard B.Analytical methods for nontraditional isotopes[J].Reviews in Mineralogy & Geochemistry, 2004, 55(1):113-152.

    Google Scholar

    [49] Zhu X K, Guo Y, Williams R J P, et al.Mass fractionation processes of transition metal isotopes[J].Earth & Planetary Science Letters, 2002, 200(1-2):47-62.

    Google Scholar

    [50] Halicz L, Yang L, Teplyakov N, et al.High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2008, 23(12):1622-1627. doi: 10.1039/b808351g

    CrossRef Google Scholar

    [51] Maréchal C N, Télouk P, Albarède F.Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J].Chemical Geology, 1999, 156(1-4):251-273. doi: 10.1016/S0009-2541(98)00191-0

    CrossRef Google Scholar

    [52] 唐索寒, 朱祥坤, 李津, 等.用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制[J].岩矿测试, 2016, 35(2):127-133.

    Google Scholar

    Tang S H, Zhu X K, Li J, et al.New standard solutions for measurement of iron, copper and zinc isotopic compositions by multi-collector inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(2):127-133.

    Google Scholar

    [53] 唐索寒, 闫斌, 朱祥坤, 等.玄武岩标准样品铁铜锌同位素组成[J].岩矿测试, 2012, 31(2):218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    CrossRef Google Scholar

    Tang S H, Yan B, Zhu X K, et al.Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J].Rock and Mineral Analysis, 2012, 31(2):218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    CrossRef Google Scholar

    [54] White W M, Albarède F, Télouk P.High-precision analysis of Pb isotope ratios by multi-collector ICP-MS[J].Chemical Geology, 2000, 167(3):257-270.

    Google Scholar

    [55] 孟郁苗, 胡瑞忠, 高剑峰, 等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试, 2016, 35(4):339-348.

    Google Scholar

    Meng Y M, Hu R Z, Gao J F, et al.Research progress on Sb geochemistry and Sb isotopes[J].Rock and Mineral Analysis, 2016, 35(4):339-348.

    Google Scholar

    [56] Woodland S, Rehkämper M, Lee D C, et al.High Pre-cision MC-ICPMS Measurement of Silver Isotopic Compositions[M]//Holland J G, Tanner S D.Plasma Source Mass Spectrometry: Applications and Emerging Technologies.Cambridge: Royal Society of Chemistry, 2003.

    Google Scholar

    [57] Siebert C, Nägler T F, Kramers J D.Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry[J].Geochemistry, Geophysics, Geosystems, 2001, 2(7):2000GC100124.

    Google Scholar

    [58] Rudge J F, Reynolds B C, Bourdon B.The double spike toolbox[J].Chemical Geology, 2009, 265(3-4):420-431. doi: 10.1016/j.chemgeo.2009.05.010

    CrossRef Google Scholar

    [59] 李津, 朱祥坤, 唐索寒.双稀释剂法在非传统稳定同位素测定中的应用——以钼同位素为例[J].岩矿测试, 2011, 30(2):138-143. doi: 10.3969/j.issn.0254-5357.2011.02.003

    CrossRef Google Scholar

    LI J, Zhu X K, Tang S H.The application of double spike in non-traditional stable isotopes-A case study on Mo isotopes[J].Rock and Mineral Analysis, 2011, 30(2):138-143. doi: 10.3969/j.issn.0254-5357.2011.02.003

    CrossRef Google Scholar

    [60] Ball J W, Izbicki J A.Occurrence of hexavalent chromium in ground water in the Western Mojave Desert, California[J].Applied Geochemistry, 2004, 19:1123-1135. doi: 10.1016/j.apgeochem.2004.01.011

    CrossRef Google Scholar

    [61] 朱建明, 谭德灿, 王静.同位素双稀释剂技术的数值模拟与应用[J].岩石学报, 2017, 34(2):503-512.

    Google Scholar

    Zhu J M, Tan D C, Wang J.The numerical optimization of isotope double spike and its applications[J].Acta Petrologica Sinica, 2017, 34(2):503-512.

    Google Scholar

    [62] Pérez-Fodich A, Reich M, Álvarez F, et al.Climate change and tectonic uplift triggered the formation of the Atacama Desert's giant nitrate deposits[J].Geology, 2014, 42(3):251-254. doi: 10.1130/G34969.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(2987) PDF downloads(178) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint