Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 2
Article Contents

Jie MENG, Zeng-xiu ZHAI, Ying-hui LIU, Jun ZHANG, Meng HAN. Influence Factors and Mechanism Study on Bag Sampling Method for Determination of Reduced Sulfide Compound by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 179-185. doi: 10.15898/j.cnki.11-2131/td.201804010034
Citation: Jie MENG, Zeng-xiu ZHAI, Ying-hui LIU, Jun ZHANG, Meng HAN. Influence Factors and Mechanism Study on Bag Sampling Method for Determination of Reduced Sulfide Compound by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 179-185. doi: 10.15898/j.cnki.11-2131/td.201804010034

Influence Factors and Mechanism Study on Bag Sampling Method for Determination of Reduced Sulfide Compound by Gas Chromatography-Mass Spectrometry

More Information
  • BACKGROUNDReduced sulfide compound is a typical odorant characterized by high activity and is difficult to store. Therefore, suitable storage conditions are of great significance for the accurate determination of reduced sulfides. OBJECTIVESTo understand the causes of loss and deterioration of highly active reduced sulfides, and to select the optimal storage conditions. METHODSGas Chromatography-Mass Spectrometry was used to investigate the loss of the process of storing reduced sulfides by bag sampling from the following four factors, air bag material, initial concentration of reduced sulfide, reduced sulfide property, and storage time. Sample bags, Tedlar®PVF and Teflon®FEP, were used as object bags. Using 5 initial concentrations (0.001, 0.010, 0.100, 1.000 and 10.000μg/mL) of mixed reduced sulfides, 0, 2, 6, 12, 24, 48 and 72h as the storage time, using the response factor and relative recovery as the evaluation factor, and using the paired t-test and adsorption kinetics, the main factors affecting the storage effect, the mechanism of material loss and the comparison of the storage capacity of the two sampling bags were studied. RESULTSThe results show that the longer the storage time, the higher the initial concentration of the substance, and the stronger the activity of the substance, the more serious the loss. When the ambient temperature reaches 60℃, the substrate background of Tedlar®PVF is more complicated than that of Teflon®FEP. Under the same conditions, the reduced sulfides are more severely damaged during Teflon®FEP storage. CONCLUSIONSIt was suggested that:(1) the reduced sulfide be stored in shad after sampling; (2) analysis should be finished within eight hours and two hours for low and high concentration, respectively; (3) Teflon®FEP be used at high temperature and Tedlar®PVF at low temperature. The research results were beneficial to ensure the storage stability of the reduced sulfide samples, minimize the situation of odor pollution, and provide technical support for the analysis of odor pollution and the subsequent control and treatment of odor pollution.
  • 加载中
  • [1] Almomani F A, Bhosale R R, Kumar A, et al.Removal of volatile sulfur compounds by solar advanced oxidation technologies and bioprocesses[J].Solar Energy, 2016, 135:348-358. doi: 10.1016/j.solener.2016.05.037

    CrossRef Google Scholar

    [2] Nagata Y.Measurement of Odor Threshold by Triangle Odor Bag Method[R].Odor Measurement Review, Ministry of Environment (MOE), Japan, 2003: 118-127.

    Google Scholar

    [3] Li Q, Lancaster Jr J R.Chemical foundations of hydrogen sulfide biology[J].Nitric Oxide, 2013, 35:21-34. doi: 10.1016/j.niox.2013.07.001

    CrossRef Google Scholar

    [4] 沈秀娥, 常淼, 刘保献, 等.大气预浓缩仪-GC/FPD测定环境空气中的痕量硫化物[J].中国环境监测, 2015, 31(6):103-108. doi: 10.3969/j.issn.1002-6002.2015.06.022

    CrossRef Google Scholar

    Shen X E, Chang M, Liu B X, et al.Determination of trace sulfur compounds in environmental air by GC/FPD coupled the air preconcentrations[J].Environmental Monitoring in China, 2015, 31(6):103-108. doi: 10.3969/j.issn.1002-6002.2015.06.022

    CrossRef Google Scholar

    [5] 孟天竹, 张金波, 蔡祖聪.气相色谱法测定土壤中挥发性硫化物[J].环境监测管理与技术, 2016, 28(1):46-49. doi: 10.3969/j.issn.1006-2009.2016.01.012

    CrossRef Google Scholar

    Meng T Z, Zhang J B, Cai Z C.Determination of sulfur gases emitted from soils by gas chromatography with sulfur chemiluminescence detector[J].The Administration and Technique of Environmental Monitoring, 2016, 28(1):46-49. doi: 10.3969/j.issn.1006-2009.2016.01.012

    CrossRef Google Scholar

    [6] Borrás E, Tortajada-Genaro L A, Muñoz A.Determina-tion of reduced sulfur compounds in air samples for the monitoring of malodor caused by landfills[J].Talanta, 2016, 148:472-477. doi: 10.1016/j.talanta.2015.11.021

    CrossRef Google Scholar

    [7] Sulyok M, Haberhauer-Troyer C, Rosenberg E.Obser-vation of sorptive losses of volatile sulfur compounds during natural gas sampling[J].Journal of Chromatography A, 2002, 946(1-2):301-305. doi: 10.1016/S0021-9673(01)01541-2

    CrossRef Google Scholar

    [8] Trabue S, Scoggin K, Mitloehner F, et al.Field sampling method for quantifying volatile sulfur compounds from animal feeding operations[J].Atmospheric Environment, 2008, 42(14):3332-3341. doi: 10.1016/j.atmosenv.2007.03.016

    CrossRef Google Scholar

    [9] 施玉格, 李刚.气相色谱质谱法测定环境空气中恶臭硫化物成分[J].干旱环境监测, 2014, 28(4):174-177. doi: 10.3969/j.issn.1007-1504.2014.04.007

    CrossRef Google Scholar

    Shi Y G, Li G.Analysis of the stench sulfide components in the environmental air by GC/MS[J].Arid Environmental Monitoring, 2014, 28(4):174-177. doi: 10.3969/j.issn.1007-1504.2014.04.007

    CrossRef Google Scholar

    [10] Parker D B, Perschbacher-Buser Z L, Andy C N, et al. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags[J].Sensors, 2010, 10(9):8536-8552. doi: 10.3390/s100908536

    CrossRef Google Scholar

    [11] Mochalski P, Wzorek B, Śliwka I, et al.Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis[J].Journal of Chromatography B, 2009, 877(3):189-196. doi: 10.1016/j.jchromb.2008.12.003

    CrossRef Google Scholar

    [12] Jo S H, Kim K H, Shon Z H, et al.Identification of con-trol parameters for the sulfur gas storability with bag sampling methods[J].Analytica Chimica Acta, 2012, 738:51-58. doi: 10.1016/j.aca.2012.06.010

    CrossRef Google Scholar

    [13] Kim Y H, Kim K H, Jo S H, et al.Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride Tedlar® bags[J].Analytica Chimica Acta, 2012, 712:162-167. doi: 10.1016/j.aca.2011.11.014

    CrossRef Google Scholar

    [14] Ahn J H, Deep A, Kim K H.The storage stability of bio-genic volatile organic compounds (BVOCs) in polyester aluminum bags[J].Atmospheric Environment, 2016, 14:430-434.

    Google Scholar

    [15] 董秀玥.配对t检验与成组t检验优选方法研究[J].数理医药学杂志, 2010, 23(1):11-14. doi: 10.3969/j.issn.1004-4337.2010.01.004

    CrossRef Google Scholar

    Dong X Y.Study on the optimal method of paired t test and group t test[J].Journal of Mathematical Medicine, 2010, 23(1):11-14. doi: 10.3969/j.issn.1004-4337.2010.01.004

    CrossRef Google Scholar

    [16] Sulyok M, Haberhauer-Troyer C, Rosenberg E.Investiga-tion of the stability of selected volatile sulfur compounds in different sampling containers[J].Journal of Chromatography A, 2001, 917(1-2):367-374. doi: 10.1016/S0021-9673(01)00654-9

    CrossRef Google Scholar

    [17] 武汉大学.分析化学(第四版)[M].北京:高等教育出版社, 2000.

    Google Scholar

    Wuhan University.Analytical Chemistry(4th Edition)[M].Beijing:Higher Education Press, 2000.

    Google Scholar

    [18] Foo K Y, Hameed B H.Insights into modeling of adsor-ption isotherm systems[J].Chemical Engineering Journal, 2010, 156(1):2-10. doi: 10.1016/j.cej.2009.09.013

    CrossRef Google Scholar

    [19] Andino J M, Bulter J W.A study of stability of method-fueled vehicle emission in tedlar bags[J].Environment Science Technology, 1991, 25(9):1644-1649. doi: 10.1021/es00021a017

    CrossRef Google Scholar

    [20] Behera S N, Sharma M.Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols:An environmental chamber study[J].Atmospheric Environment, 2011, 45(24):4015-4024. doi: 10.1016/j.atmosenv.2011.04.056

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(1291) PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint