Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 2
Article Contents

Xin QIAO, Zheng-yu ZHOU, Pei-zhen NONG, Meng LAI, Ying-bo LI, Kai-peng GUO, Qian ZHONG, Han WANG, Yan ZHOU. Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors[J]. Rock and Mineral Analysis, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039
Citation: Xin QIAO, Zheng-yu ZHOU, Pei-zhen NONG, Meng LAI, Ying-bo LI, Kai-peng GUO, Qian ZHONG, Han WANG, Yan ZHOU. Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors[J]. Rock and Mineral Analysis, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors

More Information
  • BACKGROUNDThe infrared absorption mechanism is mainly related to the Si-O lattice, channel structure water, other alkaline metal cations, and vibration of molecules. Relevant research at home and abroad focuses mainly on peak position attribution and spectral peak feature comparison. It is considered that molecular vibration is related to different types of structural water. However, there are few studies on deeper mineralization or chemical controlling factors. OBJECTIVESTo unravel the controlling factors of H2OⅠ-type infrared spectral characteristics. METHODSThe typical H2OⅠ-type natural emeralds were collected from 4 mining areas, including the Eastern Cordillera mountains in Colombia (EC), the Panjshir valley in Afghanistan(P), the Ural mountains in Russia(U), and the Kaduna/Plateau state in Nigeria (KP). The samples were analyzed by Fourier Transformed Infrared Spectrometer (FTIR). The typical H2OⅠ-type infrared (IR) spectral characteristics and their controlling factors were studied. The chemical composition data were obtained from the EMPA analyses. RESULTSThe results show that the spectral characteristics of H2O Ⅰ-type emeralds from different mining areas share a consistent pattern. Several absorptions related to structural water, basic ions and macromolecules had stable peak positions, approximately similar relative peak intensities and peak shapes. As the analysis proved, the H2OⅠIR spectra were first directly controlled by the mixed ratio of the two types of the structure water in the channel, and further related to the substitution of Al3+, chemically controlled by the (Mg2++Fe2+) concentration in the ore fluids. When the concentration of (Mg2++Fe2+) was low, the degree of isomorphic substitution was lower, and the emerald structure water was mainly characterized by Ⅰ-type water. The related elements were characterized by high Si and Al but low Mg and Fe, corresponding to the typical infrared characteristics, indicating the relationship between chemical ion concentration and infrared spectral characteristics. CONCLUSIONSThe research process showed that Infrared Spectroscopy could assist in the identification of Ⅰ-type water emerald production discrimination and the understanding of the metallogenic environment.
  • 加载中
  • [1] 郭燕.新疆南疆某地祖母绿(绿柱石)的EPMA、XRD、IR、LRM测试分析研究[D].乌鲁木齐: 新疆大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10755-1015534889.htm

    Google Scholar

    Guo Y.Study on EPMA, XRD, IR, LRM of Emerald(Beryl) from the South of Xinjiang[D].Urumqi: Xinjiang University, 2012.

    Google Scholar

    [2] 徐錞.云南麻栗坡高钒祖母绿的宝石矿物学特征研究[D].北京: 中国地质大学(北京), 2016.http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068272.htm

    Google Scholar

    Xu C.Study on the Gemological and Mineralogical Characteristics of Vanadium Rich Emeralds from Malipo Yunnan[D].Beijing: China University of Geosciences (Beijing), 2016.

    Google Scholar

    [3] 景辰.新疆达布达地区祖母绿的矿物学及光谱学特征研究[D].北京: 中国地质大学(北京), 2015.http://cdmd.cnki.com.cn/Article/CDMD-11415-1015387194.htm

    Google Scholar

    Jing C.Characteristics of Mineralogy and Spectroscopy of the Emerald Deposit, Davadar, Xijiang[D].Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [4] 林默青.尼日利亚祖母绿的宝石学和矿物学研究[D].北京: 中国地质大学(北京), 2013.http://cdmd.cnki.com.cn/Article/CDMD-11415-1016057952.htm

    Google Scholar

    Lin M Q.The Study on the Gemological and Mineralogical Characteristics of Nigerian Emerald[D].Beijing: China University of Geosciences (Beijing), 2013.

    Google Scholar

    [5] 任伟, 汪立今, 李甲平.电子探针和X射线衍射仪测定新疆祖母绿宝石[J].岩矿测试, 2010, 29(2):179-181. doi: 10.3969/j.issn.0254-5357.2010.02.018

    CrossRef Google Scholar

    Ren W, Wang L J, Li J P.Detection of emerald from Xinjiang by electron probe micro-analyzer and X-ray diffractometer[J].Rock and Mineral Analysis, 2010, 29(2):179-181. doi: 10.3969/j.issn.0254-5357.2010.02.018

    CrossRef Google Scholar

    [6] 代鸿章, 王登红, 刘丽君, 等.四川甲基卡稀有金属矿区祖母绿的矿物学特征[J].矿物学报, 2018, 38(2):135-141.

    Google Scholar

    Dai H Z, Wang D H, Liu L J, et al.A study on the emerald in the Jiajika rare metal mining area, Sichuan Province, China[J].Acta Mineralogica Sinica, 2018, 38(2):135-141.

    Google Scholar

    [7] 邹妤, 孙婉洁, 赵旭刚, 等.云南麻栗坡祖母绿生长环带特征[J].硅酸盐通报, 2017, 36(2):419-424.

    Google Scholar

    Zou Y, Sun W J, Zhao X G, et al.Characteristics of growth zone of emerald from Malipo, Yunnan Province[J].Bulletin of the Chinese Ceramic Society, 2017, 36(2):419-424.

    Google Scholar

    [8] 李晓静.常见宝石的近红外光谱研究[D].昆明: 昆明理工大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10674-1016229466.htm

    Google Scholar

    Li X J.NIR Study of Some General Gems[D].Kunming: Kunming University of Science and Technology, 2016.

    Google Scholar

    [9] 李晓静, 祖恩东.环状硅酸盐宝石矿物近红外光谱分析[J].硅酸盐通报, 2016, 35(4):1318-1321.

    Google Scholar

    Li X J, Zu E D.Near-infrared spectrum analysis of cyclosilicates gem minerals[J].Bulletin of the Chinese Ceramic Society, 2016, 35(4):1318-1321.

    Google Scholar

    [10] 代鸿章, 王登红, 刘丽君, 等.电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石[J].岩矿测试, 2018, 37(3):336-345.

    Google Scholar

    Dai H Z, Wang D H, Liu L J, et al.Study on emerald-level beryl from the Zhen'an W-Be polymetallic deposit in Shaanxi Province by electron probe micro analyzer and micro X-ray diffractometer[J].Rock and Mineral Analysis, 2018, 37(3):336-345.

    Google Scholar

    [11] 尹作为, 李笑路, 包德清, 等.莫桑比克摩根石的谱学特征研究[J].光谱学与光谱分析, 2014, 34(8):2175-2179. doi: 10.3964/j.issn.1000-0593(2014)08-2175-05

    CrossRef Google Scholar

    Yin Z W, Li X L, Bao D Q, et al.Spectroscopic characteristics study of morganite from Mozambique[J].Spectroscopy and Spectral Analysis, 2014, 34(8):2175-2179. doi: 10.3964/j.issn.1000-0593(2014)08-2175-05

    CrossRef Google Scholar

    [12] 那宝成, 孙瑞皎, 李增胜, 等.浅粉红色-粉红色绿柱石的宝石学特征[J].宝石和宝石学杂志, 2014, 16(3):32-37. doi: 10.3969/j.issn.1008-214X.2014.03.004

    CrossRef Google Scholar

    Na B C, Sun R J, Li Z S, et al.Gemmological characteristics of light pink to pink beryl[J].Journal of Gems & Gemmology, 2014, 16(3):32-37. doi: 10.3969/j.issn.1008-214X.2014.03.004

    CrossRef Google Scholar

    [13] 曲梦.新疆阿尔泰可可托海海蓝宝石的宝石矿物学研究[D].北京: 中国地质大学(北京), 2014.http://cdmd.cnki.com.cn/article/cdmd-11415-1014239416.htm

    Google Scholar

    Qu M.Mineralogical and Gemological Study of Aquamarine from Keketuohai in Aletai of Xinjiang[D].Beijing: China University of Geosciences (Beijing), 2014.

    Google Scholar

    [14] 何立言, 龙楚, 英萸, 等.水热法合成绿柱石的特征[J].宝石和宝石学杂志, 2018, 20(3):9-17.

    Google Scholar

    He L Y, Long C, Ying Y, et al.Chracteristics of hydrothermal synthetic beryl[J].Journal of Gems & Gemmology, 2018, 20(3):9-17.

    Google Scholar

    [15] 钟倩, 廖宗廷, 周征宇, 等.水热法合成Paraíba色绿柱石的宝石学特征[J].宝石和宝石学杂志, 2016, 18(6):1-7. doi: 10.3969/j.issn.1008-214X.2016.06.001

    CrossRef Google Scholar

    Zhong Q, Liao Z T, Zhou Z Y, et al.Gemmological characteristics of hydrothermal synthetic Paraíba-colour beryl[J].Journal of Gems & Gemmology, 2016, 18(6):1-7. doi: 10.3969/j.issn.1008-214X.2016.06.001

    CrossRef Google Scholar

    [16] 曹盼, 康亚楠, 祖恩东.天然祖母绿和水热法合成祖母绿的拉曼光谱分析[J].光散射学报, 2016, 28(1):42-44.

    Google Scholar

    Cao P, Kang Y N, Zu E D.Study on Roman spectrum of natural emerald and synthetic emerald by hydrothermal method[J].The Journal of Light Scattering, 2016, 28(1):42-44.

    Google Scholar

    [17] Bidny A S, Baksheev I A, Popov M P, et al.Beryl from deposits of the Ural emerald belt, Russia:ICP-MS-LA and infrared spectroscopy study[J].Moscow University Geology Bulletin, 2011, 66(2):108-115. doi: 10.3103/S0145875211020037

    CrossRef Google Scholar

    [18] Taran M N, Dyar M D, Khomenko V M.Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl[J].Physics & Chemistry of Minerals, 2017(2):1-8.

    Google Scholar

    [19] Ventura G D, Radica F, Bellatreccia F, et al.Speciation and diffusion profiles of H2O in water-poor beryl:Comparison with cordierite[J].Physics & Chemistry of Minerals, 2015, 42(9):1-11.

    Google Scholar

    [20] Fridrichová J, Bačík P, Bizovská V, et al.Spectroscopic and bond-topological investigation of interstitial volatiles in beryl from Slovakia[J].Physics & Chemistry of Minerals, 2016, 43(6):419-437.

    Google Scholar

    [21] Zhukova E S, Torgashev V I, Gorshunov B P, et al.Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice[J].Journal of Chemical Physics, 2014, 140(22):224317. doi: 10.1063/1.4882062

    CrossRef Google Scholar

    [22] Mashkovtsev R I, Thomas V G, Fursenko D A, et al.FTIR spectroscopy of D2O and HDO molecules in the c-axis channels of synthetic beryl[J].American Mineralogist, 2016, 101(1):175-180.

    Google Scholar

    [23] Belyanchikov M A, Zhukova E S, Tretiak S, et al.Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments[J].Physical Chemistry Chemical Physics, 2017, 19(45):30740-30748. doi: 10.1039/C7CP06472A

    CrossRef Google Scholar

    [24] 亓利剑, 招博文, 周征宇, 等.新疆黄色绿柱石结构水辐照离解与F-NIR光谱解析[J].矿物学报, 2012, 32(增刊):103-105.

    Google Scholar

    Qi L J, Zhao B W, Zhou Z Y, et al.Radiation dissociation and F-NIR spectra analysis of the structure water in yellow beryl in Xinjiang[J].Acta Mineralogica Sinica, 2012, 32(Supplement):103-105.

    Google Scholar

    [25] 亓利剑, 叶松, 向长金, 等.绿柱石通道中配合物的振动光谱和辐照裂解[J].地质科技情报, 2001, 20(3):659-670.

    Google Scholar

    Qi L J, Ye S, Xiang C J, et al.Vibration spectrum and irradiation splitting of mixture in beryl channels[J].Geological Science and Technology Information, 2001, 20(3):659-670.

    Google Scholar

    [26] 申柯娅.天然祖母绿与合成祖母绿的成分及红外吸收光谱研究[J].岩矿测试, 2011, 30(2):233-237. doi: 10.3969/j.issn.0254-5357.2011.02.024

    CrossRef Google Scholar

    Shen K Y.Study on chemical compositions and infrared absorption spectra of natural and synthetic emeralds[J].Rock and Mineral Analysis, 2011, 30(2):233-237. doi: 10.3969/j.issn.0254-5357.2011.02.024

    CrossRef Google Scholar

    [27] 邵慧娟, 亓利剑, 钟倩, 等.俄罗斯富铁型水热法合成祖母绿特征研究[J].宝石和宝石学杂志, 2014, 16(1):26-34. doi: 10.3969/j.issn.1008-214X.2014.01.004

    CrossRef Google Scholar

    Shao H J, Qi L J, Zhong Q, et al.Study on characteristics of iron-rich hydrothermal synthetic emerald from Russia[J].Journal of Gems & Gemmology, 2014, 16(1):26-34. doi: 10.3969/j.issn.1008-214X.2014.01.004

    CrossRef Google Scholar

    [28] Erkoyun H.Occurrence of Cr-bearing beryl in stream sediment from Eskişehir, NW Turkey[J].Earth Sciences Research Journal, 2016, 20(3):A1-A10.

    Google Scholar

    [29] 亓利剑, 夏义本, 袁心强.合成红色绿柱石中通道水分子构型及1H和23Na核磁共振谱表征[J].宝石和宝石学杂志, 2002, 4(3):8-15. doi: 10.3969/j.issn.1008-214X.2002.03.003

    CrossRef Google Scholar

    Qi L J, Xia Y B, Yuan X Q.Channel-water molecular pattern and 1H, 23Na NMR spectra representation in synthetic red beryl[J].Journal of Gems & Gemmology, 2002, 4(3):8-15. doi: 10.3969/j.issn.1008-214X.2002.03.003

    CrossRef Google Scholar

    [30] Hummer G, Rasaiah J C, Noworyta J P.Water conduction through the hydrophobic channel of a carbon nanotube[J].Nature, 2001, 414(6860):188-190. doi: 10.1038/35102535

    CrossRef Google Scholar

    [31] Gorshunov B P, Zhukova E S, Torgashev V I, et al.Quantum behavior of water molecules confined to nano cavities in gemstones[J].Journal of Physical Chemistry Letters, 2013, 4(12):2015-2020. doi: 10.1021/jz400782j

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(1959) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint