Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 4
Article Contents

Chang-sheng DENG, Sheng-fu LI, Jian-mei ZHANG, Ming-li WANG, Fu-he LE, Fang-hong NIU. Determination of Niobium and Tantalum in Geochemical Exploration Samples by ICP-MS with Acid Solution at Normal Pressure[J]. Rock and Mineral Analysis, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016
Citation: Chang-sheng DENG, Sheng-fu LI, Jian-mei ZHANG, Ming-li WANG, Fu-he LE, Fang-hong NIU. Determination of Niobium and Tantalum in Geochemical Exploration Samples by ICP-MS with Acid Solution at Normal Pressure[J]. Rock and Mineral Analysis, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016

Determination of Niobium and Tantalum in Geochemical Exploration Samples by ICP-MS with Acid Solution at Normal Pressure

  • BACKGROUNDDue to its high digestion efficiency, low equipment cost and low detection limit, atmospheric acid dissolution is widely used in the geological laboratory. However, the commonly used four acid methods (hydrofluoric acid-nitric acid-hydrochloric acid-perchloric acid) is insufficient to dissolve niobium and tantalum. At the same time, niobium and tantalum would be partially adsorbed or would settle on the vessel caused by hydrolysis and polymerization reactions leading to the test results are lower than the real values. OBJECTIVESTo determine accurately the concentrations of Nb and Ta in geochemical samples, and to solve the two key problems of the dissolution rate and hydrolysis of Nb and Ta in the solution. METHODSFor the insufficiency of dissolution, sulphuric acid was introduced into the acid solution system. The acid solution system of hydrofluoric acid-nitric acid-hydrochloric acid-perchloric acid-sulphuric acid is used to completely dissolve niobium-tantalum in the sample. In view of the hydrolysis, extracting agent of 5% hydrofluoric acid-5% sulphuric acid-5% hydrogen peroxide was used. At the same time, the standard material curves were made using the same analytical process as the sample. The combination of these two methods effectively inhibited the hydrolysis of niobium-tantalum in sample solution. The method of standard material curves reduced the error caused by the matrix inconsistency between the sample solution and the standard solution in ICP-MS analysis. RESULTSThe relative deviation was less than ±7% and the relative standard deviation was 3.11%-6.27% (n=11). The detection limits of niobium and tantalum were 0.04 μg/g and 0.03 μg/g, respectively. Compared with the detection limit of 0.33 μg/g by alkali fusion method, it has obvious advantages. CONCLUSIONSBy changing the acid solution system, the extracting agent, and the method of standard material curves, the proposed method can be applied to measure niobium and tantalum in geochemical exploration samples.
  • 加载中
  • [1] 李冰, 杨红霞.电感耦合等离子体质谱原理和应用[M].北京:地质出版社, 2005:144-147.

    Google Scholar

    Li B, Yang H X.Principle and Application of Inductively Coupled Plasma Mass Spectrometry[M].Beijing:Geological Publishing House, 2005:144-147.

    Google Scholar

    [2] 李冰, 杨红霞.电感耦合等离子体质谱(ICP-MS)技术在地学研究中的应用[J].地学前缘, 2003, 10(2):367-377. doi: 10.3321/j.issn:1005-2321.2003.02.015

    CrossRef Google Scholar

    Li B, Yang H X.Applications of inductively coupled plasma mass spectrometry in earth science[J].Earth Science Frontiers, 2003, 10(2):367-377. doi: 10.3321/j.issn:1005-2321.2003.02.015

    CrossRef Google Scholar

    [3] 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:381-396.

    Google Scholar

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Publishing House, 2011:381-396.

    Google Scholar

    [4] 叶家瑜, 江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004:252.

    Google Scholar

    Ye J Y, Jiang B L.Analysis Methods of Regional Geochemical Exploration Samples[M].Beijing:Geological Publishing House, 2004:252.

    Google Scholar

    [5] 李刚, 姚玉玲, 李婧祎, 等.铌钽元素分析技术新进展[J].岩矿测试, 2018, 37(1):1-14.

    Google Scholar

    Li G, Yao Y L, Li J Y, et al.Progress of niobium and tantalum analytical technology[J].Rock and Mineral Analysis, 2018, 37(1):1-14.

    Google Scholar

    [6] 何红蓼, 李冰, 韩丽荣, 等.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J].分析试验室, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

    CrossRef Google Scholar

    He H L, Li B, Han L R, et al.Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

    CrossRef Google Scholar

    [7] 时晓露, 刘洪青, 孙月婷, 等.电感耦合等离子体质谱法测定岩石样品中的锆铌铪钽两种预处理方法的比较[J].岩矿测试, 2009, 28(5):427-430. doi: 10.3969/j.issn.0254-5357.2009.05.006

    CrossRef Google Scholar

    Shi X L, Liu H Q, Sun Y T, et al.Comparison of two different sample pretreatment methods in determination of Zr, Nb, Hf, Ta in rocks by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2009, 28(5):427-430. doi: 10.3969/j.issn.0254-5357.2009.05.006

    CrossRef Google Scholar

    [8] 戴雪峰, 董利明, 代小吕.电感耦合等离子体质谱法测定地质样品中锆、铪、铌、钽、锡[J].广州化工, 2016, 44(14):117-120. doi: 10.3969/j.issn.1001-9677.2016.14.043

    CrossRef Google Scholar

    Dai X F, Dong L M, Dai X L.Determination of Zr, Hf, Nb, Ta and Sn in geological samples by inductively coupled plasma-mass spectrometry[J].Guangzhou Chemical Industry, 2016, 44(14):117-120. doi: 10.3969/j.issn.1001-9677.2016.14.043

    CrossRef Google Scholar

    [9] 马生凤, 温宏利, 巩爱华, 等.偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J].岩矿测试, 2009, 28(6):535-540. doi: 10.3969/j.issn.0254-5357.2009.06.007

    CrossRef Google Scholar

    Ma S F, Wen H L, Gong A H, et al.Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J].Rock and Mineral Analysis, 2009, 28(6):535-540. doi: 10.3969/j.issn.0254-5357.2009.06.007

    CrossRef Google Scholar

    [10] 童春临, 刘勇胜, 胡圣虹, 等.ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J].地球化学, 2009, 38(1):43-52. doi: 10.3321/j.issn:0379-1726.2009.01.005

    CrossRef Google Scholar

    Tong C L, Liu Y S, Hu S H, et al.Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J].Geochimica, 2009, 38(1):43-52. doi: 10.3321/j.issn:0379-1726.2009.01.005

    CrossRef Google Scholar

    [11] 闫红玲, 来新泽, 王琳, 等.常压混合酸溶矿-电感耦合等离子体发射光谱法测定铌钽[J].世界地质, 2011, 30(3):493-496. doi: 10.3969/j.issn.1004-5589.2011.03.027

    CrossRef Google Scholar

    Yan H L, Lai X Z, Wang L, et al.Dissolution with mixed acids under normal pressure-determination of niobium and tantalum by inductively coupled plasma atomic emission spectrometry[J].Global Geology, 2011, 30(3):493-496. doi: 10.3969/j.issn.1004-5589.2011.03.027

    CrossRef Google Scholar

    [12] 王小如.电感耦合等离子体质谱应用实例[M].北京:化学工业出版社, 2005:66-78.

    Google Scholar

    Wang X R.Application Examples of Inductively Coupled Plasma Mass Spectrometry[M].Beijing:Chemical Industry Press, 2005:66-78.

    Google Scholar

    [13] 马生凤, 温宏利, 李冰, 等.微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J].岩矿测试, 2016, 35(3):271-275.

    Google Scholar

    Ma S F, Wen H L, Li B, et al.Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J].Rock and Mineral Analysis, 2016, 35(3):271-275.

    Google Scholar

    [14] Awaji S, Nakamura K, Nozaki T, et al.A simple method for precise determination of 23 trace elements in granitic rocks by ICP-MS after lithium tetraborate fusion[J].Resource Geology, 2010, 56(4):471-478.

    Google Scholar

    [15] Hall G E M, Pelchat J C.Analysis of standard reference materials for Zr, Nb, Hf and Ta by ICP-MS after lithium metaborate fusion and cupferron separation[J].Geostandards & Geoanalytical Research, 1990, 14(1):197-206.

    Google Scholar

    [16] Munker C.Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand:Source constraints and application of refined ICP-MS techniques[J].Chemical Geology, 1998, 144(1-2):23-45. doi: 10.1016/S0009-2541(97)00105-8

    CrossRef Google Scholar

    [17] 胡家祯, 于亚辉, 吴娣, 等.电感耦合等离子体质谱法(ICP-MS)测定水系沉积物中的铌钽锆铪[J].矿产与地质, 2016, 30(4):699-702. doi: 10.3969/j.issn.1001-5663.2016.04.030

    CrossRef Google Scholar

    Hu J Z, Yu Y H, Wu D, et al.Determination of Nb, Ta, Zr, and Hf in stream sediment by inductively coupled plasma mass spectrometry (ICP-MS)[J].Mineral Resources and Geology, 2016, 30(4):699-702. doi: 10.3969/j.issn.1001-5663.2016.04.030

    CrossRef Google Scholar

    [18] 刘卫, 栾亚兰, 仵丽萍.电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J].理化检验(化学分册), 2006, 42(9):715-716.

    Google Scholar

    Liu W, Luan Y L, Wu L P.ICP-AES determination of Nb and Ta in products of oredressing of spodumene[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2006, 42(9):715-716.

    Google Scholar

    [19] 姚玉玲, 吴丽琨, 刘卫, 等.乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J].岩矿测试, 2015, 34(2):224-248.

    Google Scholar

    Yao Y L, Wu L K, Liu W, et al.Determination of Nb and Ta in ores and metallurgical samples by inductively coupled plasma-atomic emission spectrometry with ethanol as a sensitizer[J].Rock and Mineral Analysis, 2015, 34(2):224-248.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(1986) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint