Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 4
Article Contents

Bi-yu TANG, Yi-hua SHI, Zhong-ping YANG, Li QIU, Xing-qian GU, Guang-ju PENG. Determination of Gallium, Germanium and Indium in Coal by Inductively Coupled Plasma-Mass Spectrometry with Ashing Acid Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378. doi: 10.15898/j.cnki.11-2131/td.201711250186
Citation: Bi-yu TANG, Yi-hua SHI, Zhong-ping YANG, Li QIU, Xing-qian GU, Guang-ju PENG. Determination of Gallium, Germanium and Indium in Coal by Inductively Coupled Plasma-Mass Spectrometry with Ashing Acid Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378. doi: 10.15898/j.cnki.11-2131/td.201711250186

Determination of Gallium, Germanium and Indium in Coal by Inductively Coupled Plasma-Mass Spectrometry with Ashing Acid Digestion

  • BACKGROUNDThe accurate determination of gallium, germanium and indium in coal provides an important basis for geochemical exploration of the scattered elements in coal, and is of great economic significance for the comprehensive utilization of the scattered metals. The ashing conditions of germanium are strict, and the analytical results of germanium are greatly influenced by the ashing temperature. Due to the different ashing temperatures of gallium (Ga), germanium (Ge) and indium (In), the three elements could not be processed and determined simultaneously using existing analytical methods. OBJECTIVESTo develop a method for the analysis of Ga, Ge and In simultaneously, avoid the loss of Ge in the ashing and digestion processes, and to eliminate the interference in determination. METHODSA sensitive and efficient analysis method of ashing acid digestion method combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for determining Ga, Ge and In in coal was established by using the optimum ashing temperature of 625℃, selecting suitable acid solution conditions and mass spectrometry determining conditions. Using nitric acid-sulfuric acid-hydrofluoric acid to dissolve ash and 8 mol/L nitric acid for reconstitution, the volatilization loss of niobium was avoided. By optimizing the instrumental working conditions and interference experiments, 103Rh was used as the internal standard element, and 71Ga, 74Ge and 115In were selected as the determined isotopes, eliminating the interference of various elements. RESULTSThe linear correlation coefficients of the standard curves of Ga, Ge and In are all above 0.9999. The detection limits of Ga, Ge and In are 0.004, 0.003 and 0.002 μg/L, respectively. The precisions range from 1.17% to 3.15%, and the sample recoveries are from 96.6% to 102.0%. The determination results of GBW07363, GBW07457 and GBW07428 are in agreement with the certified values. CONCLUSIONSCompared to traditional analytical methods of Ga, Ge and In in coal, the proposed method is simpler, faster, and has a lower detection limit with simultaneous determination of multiple elements.
  • 加载中
  • [1] 朱华雄, 陈寒勇, 章伟, 等.华北煤中金属矿产的种类和分布特征[J].煤炭学报, 2016, 41(2):303-309.

    Google Scholar

    Zhu H X, Chen H Y, Zhang W, et al.Metal mineral types and distribution characteristics in coal in Northern China[J].Journal of China Coal Society, 2016, 41(2):303-309.

    Google Scholar

    [2] 赵汀, 秦鹏珍, 王安建, 等.镓矿资源需求趋势分析与中国镓产业发展思考[J].地球学报, 2017, 38(1):77-84.

    Google Scholar

    Zhao T, Qin P Z, Wang A J, et al.An analysis of gallium ore resources demand trend and the thinking concerning China's gallium industry development[J].Acta Geoscientica Sinica, 2017, 38(1):77-84.

    Google Scholar

    [3] Kuroiwa K, Ohura S, Morisada S, et al.Recovery of germanium from waste solar panels using ion-exchange membrane and solvent extraction[J].Minerals Engineering, 2014, 55(1):181-185.

    Google Scholar

    [4] 姚艳清, 刘四清, 董旭, 等.铟的富集分离工艺技术现状及展望[J].金属矿山, 2016(9):132-136. doi: 10.3969/j.issn.1001-1250.2016.09.027

    CrossRef Google Scholar

    Yao Y Q, Liu S Q, Dong X, et al.Current situation and outlook on indium enrichment and separation technology[J].Metal Mine, 2016(9):132-136. doi: 10.3969/j.issn.1001-1250.2016.09.027

    CrossRef Google Scholar

    [5] 袁华玮, 刘全军, 张治国.云南某炼锌渣中锗铟的硫酸浸出[J].金属矿山, 2016(7):189-192. doi: 10.3969/j.issn.1001-1250.2016.07.037

    CrossRef Google Scholar

    Yuan H W, Liu Q J, Zhang Z G.Germanium and indium leaching by sulfuric acid from a zinc smelting slag in Yunnan[J].Metal Mine, 2016(7):189-192. doi: 10.3969/j.issn.1001-1250.2016.07.037

    CrossRef Google Scholar

    [6] Shan X Q, Ni Z M, Yuan Z N.Determination of indium in minerals, river sediments and coal fly ash by electrothermal atomic absorption spectrometry with palladium as a matrix modifier[J]. Analytica Chimica Acta, 1985, 171(1):269-277.

    Google Scholar

    [7] 沈宇, 张尼, 高小红, 等.微波消解-双浊点萃取ICP-MS测定地球化学样品中的痕量铂钯钌铑[J].岩矿测试, 2016, 35(3):259-264.

    Google Scholar

    Shen Y, Zhang N, Gao X H, et al.Determination of Pt, Pd, Ru, Rh in geochemical samples by ICP-MS with microwave digestion and dua-cloud point extraction[J].Rock and Mineral Analysis, 2016, 35(3):259-264.

    Google Scholar

    [8] Peters S T M, Münker C, Wombacher F, et al.Precise determination of low abundance isotopes (174Hf, 180W and 190Pt) in terrestrial materials and meteorites using multiple collector ICP-MS equipped with 1012Ω Faraday amplifiers[J].Chemical Geology, 2015, 413:132-145. doi: 10.1016/j.chemgeo.2015.08.018

    CrossRef Google Scholar

    [9] Nagaishi K, Ishikawa T.A simple method for the precise determination of boron, zirconium, niobium, hafnium and tantalum using ICP-MS and new results for rock reference samples[J].Geochemical Journal, 2009, 43(2):133-141. doi: 10.2343/geochemj.1.0010

    CrossRef Google Scholar

    [10] Bychkova Y V, Sinitsyn M Y, Petrenko D B, et al.Method peculiarities of multielemental analysis of rocks with inductively coupled plasma-mass spectrometry[J].Moscow University Geology Bulletin, 2017, 72(1):56-62. doi: 10.3103/S0145875217010033

    CrossRef Google Scholar

    [11] Filipiak-Szok A, Kurzawa M, Szłyk E.Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements[J].Journal of Trace Elements in Medicine and Biology, 2015, 30:54-58. doi: 10.1016/j.jtemb.2014.10.008

    CrossRef Google Scholar

    [12] Foteeva L S, Matczuk M, Pawlak K, et al.Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(Ⅲ) metallodrug-DNA interactions[J].Analytical and Bioanalytical Chemistry, 2017, 409(9):2421-2427. doi: 10.1007/s00216-017-0186-0

    CrossRef Google Scholar

    [13] Yang B, Zhang Y, Chen B, et al.Elemental-tagged immu-noassay combined with inductively coupled plasma mass spectrometry for the detection of tumor cells using a lead sulfide nanoparticle label[J].Talanta, 2017, 167:499-505. doi: 10.1016/j.talanta.2017.02.063

    CrossRef Google Scholar

    [14] Bitragunta S P, Palani S G, Gopala A, et al.Detection of TiO2 nanoparticles in municipal sewage treatment plant and their characterization using single particle ICP-MS[J].Bulletin of Environmental Contamination and Toxicology, 2017, 98(5):595-600. doi: 10.1007/s00128-017-2031-8

    CrossRef Google Scholar

    [15] Alkas F B, Shaban J A, Sukuroglu A A, et al.Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus[J].Environmental Monitoring and Assessment, 2017, 189(10):516. doi: 10.1007/s10661-017-6222-x

    CrossRef Google Scholar

    [16] Manousakas M, Papaefthymiou H, Eleftheriadis K, et al.Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS[J].Science of the Total Environment, 2014, 493:694-700. doi: 10.1016/j.scitotenv.2014.06.043

    CrossRef Google Scholar

    [17] 徐伟, 李育珍, 段太成, 等.电感耦合等离子体质谱法测定高纯二氧化锡电极材料中痕量金属杂质离子[J].分析化学, 2015, 43(9):1349-1352.

    Google Scholar

    Xu W, Li Y Z, Duan T C, et al.Determination of trace metal impurities in high pure tin oxide electrode material by inductively coupled plasma mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2015, 43(9):1349-1352.

    Google Scholar

    [18] Navratilova J, Praetorius A, Gondikas A, et al.Detection of engineered copper nanoparticles in soil using single particle ICP-MS[J].International Journal of Environmental Research and Public Health, 2015, 12:15756-15768. doi: 10.3390/ijerph121215020

    CrossRef Google Scholar

    [19] 刘曙, 沈劼, 周海明, 等.电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征[J].岩矿测试, 2015, 34(4):436-441.

    Google Scholar

    Liu S, Shen J, Zhou H M, et al.Study on occurrence status characteristics of trace elements in imported Indonesia coals of Shanghai port using inductively coupled plasma-mass spectrometry and atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(4):436-441.

    Google Scholar

    [20] 杨金辉, 张小毅.电感耦合等离子体质谱法测定煤中11种元素[J].冶金分析, 2013, 33(9):8-13. doi: 10.3969/j.issn.1000-7571.2013.09.002

    CrossRef Google Scholar

    Yang J H, Zhang X Y.Determination of eleven elements in coal by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2013, 33(9):8-13. doi: 10.3969/j.issn.1000-7571.2013.09.002

    CrossRef Google Scholar

    [21] Mketo N, Nomngongo P N, Ngila J C.An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2016, 124:201-208. doi: 10.1016/j.microc.2015.08.010

    CrossRef Google Scholar

    [22] Krishna M V B, Chandrasekaran K, Chakravarthy S, et al.An integrated approach based on oxidative pyrolysis and microwave-assisted digestion for the multi-elemental analysis of coal samples by ICP-based techniques[J].Fuel, 2015, 158:770-778. doi: 10.1016/j.fuel.2015.06.039

    CrossRef Google Scholar

    [23] 段云龙.煤炭试验方法标准及其说明[M].北京:中国标准出版社, 2004.

    Google Scholar

    Duan Y L.Standards of Coal Test Method and the Descriptions[M].Beijing:Standards Press of China, 2004.

    Google Scholar

    [24] 陈波, 刘洪青, 邢应香.电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J].岩矿测试, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

    CrossRef Google Scholar

    Chen B, Liu H Q, Xing Y X.Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

    CrossRef Google Scholar

    [25] 程秀花, 黎卫亮, 王海蓉, 等.封闭酸溶样ICP-MS法直接测定地质样品中镓、铟、铊、锗[J].分析试验室, 2015, 34(10):1204-1208.

    Google Scholar

    Cheng X H, Li W L, Wang H R, et al.Determination of gallium, indium, thallium and germanium in geological samples after pressurized acid digestion by inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2015, 34(10):1204-1208.

    Google Scholar

    [26] 靳兰兰, 王秀季, 李会来, 等.电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J].冶金分析, 2016, 36(7):1-14.

    Google Scholar

    Jin L L, Wang X J, Li H L, et al.Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J].Metallurgical Analysis, 2016, 36(7):1-14.

    Google Scholar

    [27] 赵小学, 张霖琳, 张建平, 等.ICP-MS在环境分析中的质谱干扰及其消除[J].中国环境监测, 2014, 30(3):101-106. doi: 10.3969/j.issn.1002-6002.2014.03.022

    CrossRef Google Scholar

    Zhao X X, Zhang L L, Zhang J P, et al.Spectral interference and elimination of environmental analysis with ICP-MS[J].Environmental Monitoring in China, 2014, 30(3):101-106. doi: 10.3969/j.issn.1002-6002.2014.03.022

    CrossRef Google Scholar

    [28] Agatemor C, Beauchemin D.Matrix effects in inductively coupled plasma mass spectrometry:A review[J].Analytica Chimica Acta, 2011, 706:66-83. doi: 10.1016/j.aca.2011.08.027

    CrossRef Google Scholar

    [29] 张杰芳, 闫玉乐, 夏承莉, 等.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试, 2017, 36(1):46-51.

    Google Scholar

    Zhang J F, Yan Y L, Xia C L, et al.Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(1):46-51.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(1891) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint