Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 4
Article Contents

Yong-hai YUAN, Feng YANG, Hong-xia YU, Xi-jun LIU, Ji-feng XU. High-precision Measurement of Strontium and Neodymium Isotopic Composition by Multi-collector Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122
Citation: Yong-hai YUAN, Feng YANG, Hong-xia YU, Xi-jun LIU, Ji-feng XU. High-precision Measurement of Strontium and Neodymium Isotopic Composition by Multi-collector Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

High-precision Measurement of Strontium and Neodymium Isotopic Composition by Multi-collector Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

  • BACKGROUNDDetermination of strontium (Sr) and neodymium (Nd) isotopic composition in geological samples by Multi-collector Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) needs a lengthy and complex chemical preparation procedure. Moreover, samples cannot be dissolved completely. OBJECTIVESTo effectively digest samples and eliminate interferences from the experimental process. METHODSGeological samples were dissolved by microwave digestion. The processes of Sr, Nd chemical separation and mass spectrometry analyses were studied. In particular, the recovery and memory effect of resin column were investigated. RESULTSThe research shows that after ten times usages Sr and Nd procedure, blanks of the resin are less than 1.0 ng. However, the recovery decreases significantly from 98% to 20% and 90% to 50%, respectively. If the analyzed samples contain low concentrations of Sr and Nd, which are insufficient for mass spectrometry analysis, it is suggested that Sr special effect resin should be used no more than 5 times and AG50W-X8 and Ln resin should be used no more than 10 times. The entire procedure is applied in the separation of Sr and Nd of international standard geological samples (BCR-2, W-2a, BHVO-2, AGV-2). The acquired 87Sr/86Sr and 143Nd/144Nd ratios are consistent with those in the literature, and the instrumental internal precision 2SE (n=50) and methodological external precision 2SD (n=6) are better than 0.0015%. CONCLUSIONSThe proposed method meets the requirement of high-precision measurement of Sr and Nd isotopic composition in geological samples.
  • 加载中
  • [1] 王文元, 高建国, 侬阳霞, 等.云南禄劝噜鲁铅锌矿床铷-锶同位素年代学与硫、铅同位素地球化学特征[J].地质通报, 2017, 36(7):1294-1304. doi: 10.3969/j.issn.1671-2552.2017.07.019

    CrossRef Google Scholar

    Wang W Y, Gao J G, Nong Y X, et al.Rb-Sr isotopic geochronology and geochemical characteristics of S and Pb isotopes of the Lulu Pb-Zn deposit in Luquan, Yunnan Province[J].Geological Bulletin of China, 2017, 36(7):1294-1304. doi: 10.3969/j.issn.1671-2552.2017.07.019

    CrossRef Google Scholar

    [2] Deng K, Li Q G, Chen Y J, et al.Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China:Petrogenesis and geodynamic implications[J].Lithos, 2018, 296-299:113-128. doi: 10.1016/j.lithos.2017.10.016

    CrossRef Google Scholar

    [3] 刘贤荣, 林晓辉, 于瑞莲, 等.铅-锶-钕同位素示踪技术在PM2.5源解析中的应用[J].环境科学导刊, 2016, 35(5):55-59. doi: 10.3969/j.issn.1673-9655.2016.05.013

    CrossRef Google Scholar

    Liu X R, Lin X H, Yu R L, et al.Application of Pb-Sr-Nd isotopic tracing technique in the recognition and analysis of PM2.5 pollution sources[J].Environmental Science Survey, 2016, 35(5):55-59. doi: 10.3969/j.issn.1673-9655.2016.05.013

    CrossRef Google Scholar

    [4] 邵磊, 李长安, 张玉芬, 等.长江上游水系沉积物锶-钕同位素组成及物源示踪[J].沉积学报, 2014, 32(2):290-295.

    Google Scholar

    Shao L, Li C A, Zhang Y F, et al.Sr-Nd isotopic compositions of the upper Yangtze River sediments:Implications for tracing sediment sources[J].Acta Sedimentologica Sinca, 2014, 32(2):290-295.

    Google Scholar

    [5] 刘家军, 吕志成, 吴胜华, 等.南秦岭大巴山大型钡成矿带中锶同位素组成及其成因意义[J].地学前缘, 2014, 21(5):23-30.

    Google Scholar

    Liu J J, Lü Z C, Wu S H, et al.Strontium isotopic composition and its genetic significance of the Dabashan large barium metallogenic belt in Southern Qingling mountains[J]. Earth Science Frontiers, 2014, 21(5):23-30.

    Google Scholar

    [6] 蔡伊, 张乾, 张永斌, 等.桂中镇圩碳酸盐岩型滑石矿床热液方解石的锶同位素研究[J].地球化学, 2015, 44(5):427-437. doi: 10.3969/j.issn.0379-1726.2015.05.003

    CrossRef Google Scholar

    Cai Y, Zhang Q, Zhang Y B, et al.Strontium isotopic geochemistry of hydrothermal calcites in carbonate-hosted talc deposits at Zhengxu in central Guangxi Province, South China[J].Geochemical, 2015, 44(5):427-437. doi: 10.3969/j.issn.0379-1726.2015.05.003

    CrossRef Google Scholar

    [7] 侯可军, 秦燕, 李延河, 等.磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析[J].岩矿测试, 2013, 32(4):547-554. doi: 10.3969/j.issn.0254-5357.2013.04.005

    CrossRef Google Scholar

    Hou K J, Qin Y, Li Y H, et al.In situ Sr-Nd isotopic measurement of apatite using laser ablation multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4):547-554. doi: 10.3969/j.issn.0254-5357.2013.04.005

    CrossRef Google Scholar

    [8] Bao Z A, Yuan H L, Zong C L, et al.Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fs LA-(MC)-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31:1012-1022. doi: 10.1039/C5JA00410A

    CrossRef Google Scholar

    [9] 李杨, 杨岳衡, 焦淑娟, 等.金红石Hf同位素激光原位多接收等离子体质谱(LA-MC-ICP-MS)测定[J].中国科学(地球科学), 2016, 46(6):857-869.

    Google Scholar

    Li Y, Yang Y H, Jiao S J, et al.In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS[J].Science China (Earth Sciences), 2015, 58:2134-2144.

    Google Scholar

    [10] 何连花, 刘季花, 张俊, 等.MC-ICP-MS测定富钴结壳中的铜锌同位素的化学分离方法研究[J].分析测试学报, 2016, 35(10):1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

    CrossRef Google Scholar

    He L H, Liu J H, Zhang J, et al.Separation of Cu and Zn in cobalt-rich crusts for isotope determination by MC-ICP-MS[J].Journal of Instrumental Analysis, 2016, 35(10):1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

    CrossRef Google Scholar

    [11] Li C F, Li X H, Li Q L, et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytical Chemical Acta, 2012, 727:54-60. doi: 10.1016/j.aca.2012.03.040

    CrossRef Google Scholar

    [12] Liu H C, Chung C H, You C F, et al.Determination of 87Sr/86Sr and δ88Sr/86Sr ratios in plant materials using MC-ICP-MS[J].Analytical and Bioanalytical Chemistry, 2016, 408:387-397. doi: 10.1007/s00216-015-9070-y

    CrossRef Google Scholar

    [13] 宗春蕾, 袁洪林, 戴梦宁.一次溶样分离地质样品中Pb-Sr-Nd方法的可行性研究[J].岩矿测试, 2012, 31(6):945-949. doi: 10.3969/j.issn.0254-5357.2012.06.005

    CrossRef Google Scholar

    Zong C L, Yuan H L, Dai M N.A feasibility study on chemical separation of Pb, Sr and Nd from the same single dissolution of geological sample[J].Rock and Mineral Analysis, 2012, 31(6):945-949. doi: 10.3969/j.issn.0254-5357.2012.06.005

    CrossRef Google Scholar

    [14] 苟龙飞, 金章东, 邓丽, 等.高效分离Li及其同位素的MC-ICP-MS精确测定[J].地球化学, 2017, 46(6):528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

    CrossRef Google Scholar

    Gou L F, Jin Z D, Deng L, et al.Efficient purification for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J].Geochemical, 2017, 46(6):528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

    CrossRef Google Scholar

    [15] de Carvalho G G A, Oliveira P V, Yang L.Determination of europium isotope ratios in natural waters by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32:987-995. doi: 10.1039/C7JA00020K

    CrossRef Google Scholar

    [16] Dominique W, Bruno K, Claude M, et al.High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS[J].Geochemistry, Geophysics, Geosystems, 2006, 7(8):1-30.

    Google Scholar

    [17] 袁永海, 元志红.微波消解-磷钼蓝分光光度法测定钨矿石中的磷含量[J].中国无机分析化学, 2015, 5(1):24-27. doi: 10.3969/j.issn.2095-1035.2015.01.007

    CrossRef Google Scholar

    Yuan Y H, Yuan Z H.Determination of phosphorus in tungsten ores by microwave digestion-phosphorus molybdenum blue spectrophotometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1):24-27. doi: 10.3969/j.issn.2095-1035.2015.01.007

    CrossRef Google Scholar

    [18] 袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中的砷和锑[J].冶金分析, 2016, 36(3):39-43.

    Google Scholar

    Yuan Y H, Yin C H, Yuan Z H, et al.Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(3):39-43.

    Google Scholar

    [19] 黎卫亮, 程秀花, 李忠煜, 等.碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J].岩矿测试, 2017, 36(5):468-473.

    Google Scholar

    Li W L, Cheng X H, Li Z Y, et al.Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J].Rock and Mineral Analysis, 2017, 36(5):468-473.

    Google Scholar

    [20] 李潮峰, 李献华, 郭敬辉, 等.微量岩石样品中Rb-Sr和Pb一步分离及高精度热电离质谱测试[J].地球化学, 2011, 40(5):399-406.

    Google Scholar

    Li C F, Li X H, Guo J H, et al.Single-step separation of Rb-Sr and Pb from minor rock samples and high precision determination using thermal ionization mass spectrometry[J].Geochemical, 2011, 40(5):399-406.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(2534) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint