Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 3
Article Contents

Wei ZHOU, Meng ZENG, Jian WANG, Lei ZHANG, Ying-chun LI. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113
Citation: Wei ZHOU, Meng ZENG, Jian WANG, Lei ZHANG, Ying-chun LI. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113

Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

More Information
  • BACKGROUND The analysis of ore samples by X-ray Fluorescence Spectrometry (XRF) has the advantages of quantitative accuracy, less reagent and good reproducibility. However, due to the lack of rare earth standard materials at present, the accurate quantitative requirements for complex rare earth ore samples cannot be met. BAOBJECTIVES To establish the analysis method for XRF determination of 25 major elements and rare earth elements in rare earth ores and mineralized samples. METHODS The use of artificial standard samples solved the problem of lack of standard materials. The linear ranges of La, Ce and Y were extended by adding high purity rare earth oxides La2O3, CeO2 and Y2O3. A calibration line was produced using artificial standard samples, existing standard materials of rare earth and carbonate. The major elements were calibrated by a theoretical alpha coefficient method, whereas the rare earth elements were calibrated by an empirical coefficient method. Interference correction was used for elements with overlapping spectral lines. RESULTS The relative standard deviations (RSD, n=13) of most major elements were less than 1.5%, whereas the RSDs of rare earth elements were 0.69%-6.94% when their concentrations were above 300 μg/g. CONCLUSIONS The method was evaluated by unknown samples and the sums of major elements, rare earth elements and loss of ignition were 99.41%-100.63%. The method satisfies the first criterion of Geology and Minerals Laboratory Testing Quality Management Standards.
  • 加载中
  • [1] Simandl G J.Geology and market-dependent significance of rare earth element resources[J].Mineralium Deposita, 2014, 49(8):889-904. doi: 10.1007/s00126-014-0546-z

    CrossRef Google Scholar

    [2] Jordens A, Cheng Y P, Waters K E.A review of the beneficiation of rare earth element bearing minerals[J].Minerals Engineering, 2013, 41(1):97-114.

    Google Scholar

    [3] Simandl G J, Fajber R, Paradis S.Portable X-ray fluore-scence in the assessment of rare earth element-enriched sedimentary phosphate deposits[J].Geochemistry Exploration Environment Analysis, 2014, 14(2):161-169. doi: 10.1144/geochem2012-180

    CrossRef Google Scholar

    [4] Xie F, Zhang T A, Dreisinger D, et al.A critical review on solvent extraction of rare earths from aqueous solutions[J].Minerals Engineering, 2014, 56(2):10-28.

    Google Scholar

    [5] 李小莉, 张勤.粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J].冶金分析, 2013, 33(7):35-40.

    Google Scholar

    Li X L, Zhang Q.Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7):35-40.

    Google Scholar

    [6] 张文娟, 谢玲君, 刘鸿.ICP-AES法测定氟碳铈矿中低含量稀土总量[J].有色金属科学与工程, 2016, 7(6):141-146.

    Google Scholar

    Zhang W J, Xie L J, Liu H.Determination of low content total rare earth in bastnaesite by ICP-AES[J].Nonferrous Metals Science and Engineering, 2016, 7(6):141-146.

    Google Scholar

    [7] 罗立强, 詹秀春, 李国会.X射线荧光光谱仪[M].北京:化学工业出版社, 2008.

    Google Scholar

    Luo L Q, Zhan X C, Li G H.X-ray Fluorescence Spectrometer[M].Beijing:Chemical Industry Press, 2008.

    Google Scholar

    [8] Claisse F, Blanchette J S B(著). 卓尚军(译). 硼酸盐熔融的物理与化学[M]. 上海: 华东理工大学出版社, 2006.

    Google Scholar

    Claisse F, Blanchette J S B (Authors). Zhuo S J (Translator). Physics and Chemistry of Borate Melting[M]. Shanghai: East China University of Science and Technology Press, 2006.

    Google Scholar

    [9] Parra L M M, Greaves E D, Paz J L, et al.Simultaneous determination of rare earths by X-ray fluorescence spectrometry using a fundamental parameters method[J].X-Ray Spectrometry, 1993, 22(5):362-367. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [10] 黄肇敏, 周素莲.X射线荧光光谱法测定混合稀土氧化物中稀土分量[J].光谱学与光谱分析, 2007, 27(9):1873-1877.

    Google Scholar

    Huang Z M, Zhou S L.Method for determination of RE2O3 by X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2007, 27(9):1873-1877.

    Google Scholar

    [11] 李可及, 肖颖.熔融制样-X射线荧光光谱法测定氟碳铈矿流程样品[J].稀土, 2016, 37(2):144-148.

    Google Scholar

    Li K J, Xiao Y.Determination of bastnaesite process samples by fusion X-ray fluorescence spectrometry[J].Chinese Rare Earths, 2016, 37(2):144-148.

    Google Scholar

    [12] Legkodymov A A, Kuper K E, Nazmov V P, et al.Applying hard X-rays to determination of the minimum detection levels of rare earth element by the XRFA-SR method[J].Bulletin of the Russian Academy of Sciences Physics, 2015, 79(1):103-108. doi: 10.3103/S1062873815010207

    CrossRef Google Scholar

    [13] 于丽丽, 汤玉河, 肖飞燕, 等.X射线荧光光谱无标定量测定稀土矿石中五氧化二磷[J].冶金分析, 2017, 37(1):57-60.

    Google Scholar

    Yu L L, Tang Y H, Xiao F Y, et al.Determination of phosphorus pentoxide in rare earth ore by X-ray fluorescence spectrometry coupled with standard-less quantitative analysis[J].Metallurgical Analysis, 2017, 37(1):57-60.

    Google Scholar

    [14] 冯丽丽, 张庆建, 丁仕兵, 等.X射线荧光光谱法测定锆矿中10种主次成分[J].冶金分析, 2014, 34(7):51-55.

    Google Scholar

    Feng L L, Zhang Q J, Ding S B, et al.Determination of ten major and minor components in zirconium ore by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2014, 34(7):51-55.

    Google Scholar

    [15] 罗学辉, 苏建芝, 汤宇磊, 等.高倍稀释熔融制样-X射线荧光光谱法测定镍矿石中主次成分[J].冶金分析, 2017, 37(9):52-56.

    Google Scholar

    Luo X H, Su J Z, Tang Y L, et al.Determination of major and minor components in nickel ore by X-ray fluorescence spectrometry with fusion sample preparation of high dilution[J].Metallurgical Analysis, 2017, 37(9):52-56.

    Google Scholar

    [16] 李迎春, 周伟, 王健, 等.X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J].岩矿测试, 2013, 32(2):249-253.

    Google Scholar

    Li Y C, Zhou W, Wang J, et al.Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2013, 32(2):249-253.

    Google Scholar

    [17] 沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224.

    Google Scholar

    Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224.

    Google Scholar

    [18] 李国会, 李小莉.X射线荧光光谱分析熔融法制样的系统研究[J].冶金分析, 2015, 35(7):1-9.

    Google Scholar

    Li G H, Li X L.Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(7):1-9.

    Google Scholar

    [19] 詹秀春, 陈永君, 郑妙子, 等.地质样品X射线荧光分析中的背景相关曲线及其应用[J].岩矿测试, 2003, 22(3):161-164.

    Google Scholar

    Zhan X C, Chen Y J, Zheng M Z, et al.Background-related curve in the X-ray fluorescence spectrometric analysis of geological materials and its application[J].Rock and Mineral Analysis, 2003, 22(3):161-164.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article Metrics

Article views(3049) PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint