Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 2
Article Contents

Fu-rong CHEN, Chun-hong SHI, Hong-xia LIANG. Geochemical Characteristics Comparison of Different Scale Sediments in the Humid and Semi-humid Hilly Area, Southern China[J]. Rock and Mineral Analysis, 2017, 36(2): 136-145. doi: 10.15898/j.cnki.11-2131/td.2017.02.007
Citation: Fu-rong CHEN, Chun-hong SHI, Hong-xia LIANG. Geochemical Characteristics Comparison of Different Scale Sediments in the Humid and Semi-humid Hilly Area, Southern China[J]. Rock and Mineral Analysis, 2017, 36(2): 136-145. doi: 10.15898/j.cnki.11-2131/td.2017.02.007

Geochemical Characteristics Comparison of Different Scale Sediments in the Humid and Semi-humid Hilly Area, Southern China

  • Appropriate sampling grain size is very important for accurate geochemical information and better exploration effects in different landscapes. In order to determine the best sampling grain size of the sediments in the humid and semi-humid hilly landscape, a sampling experiment was carried out. Samples of two scales, -60 and-10-+80, were collected from the Hulesi—Ningguodun area in Southern Anhui Province. 40-element high-precision data, which are needed for regional geochemical exploration, were acquired by X-ray Fluorescence Spectrometry (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Results show that the contents of rock-forming elements in sediments are similar to the background values of regional rocks. Samples with grain size of-10-+80 scale are rich in As, Au, Hg, Mo, Pb and Sb. Samples with grain size of-10-+80 scale have been weakly modified by later surface weathering and reserve the original geochemical characteristics, which are remarkably better than the-60 scale in delineating anomalies of mineralization and reflecting characteristics of ore-related anomalies. Therefore, the-10-+80 scale is preferred for stream sediment surveys in the middle and lower mountains and hilly areas in southern Anhui province, which is meaningful to the choice of stream sediment sample grain size in performing geochemical exploration of similar landscapes in China.
  • 加载中
  • [1] 向运川, 任天祥, 牟绪赞, 等.化探资料应用技术要求[M].北京:地质出版社, 2010.

    Google Scholar

    Xiang Y C, Ren T X, Mou X Z, et al.Application and Technical Requirements of Geochemical Materials[M].Beijing:Geological Publishing House, 2010.

    Google Scholar

    [2] 迟清华, 鄢明才.应用地球化学元素丰度手册[M].北京:地质出版社, 2007.

    Google Scholar

    Chi Q H, Yan M C.Application of Geochemical Element Abundance Data Handbook[M].Beijing:Geological Publishing House, 2007.

    Google Scholar

    [3] 冷福荣, 李志强.1:20万区域化探方法核心技术"取样粒级"的讨论[J].物探与化探, 2009, 33(6):678-685.

    Google Scholar

    Leng F R, Li Z Q.A discussion on the "sampling grade", a key technology in 1:200000 regional geochemical exploration[J].Geophysical & Geochemical Exploration, 2009, 33(6):678-685.

    Google Scholar

    [4] 禹斌, 李惠, 张国义, 等.不同地球化学景观区的化探方法及实例[J].地质找矿论丛, 2005, 12(3):182-186.

    Google Scholar

    Yu B, Li H, Zhang G Y, et al.Geochemical exploration at various landscapes and the examples[J].Geological Prospecting Series, 2005, 12(3):182-186.

    Google Scholar

    [5] 贾玉杰, 龚庆杰, 韩东昱, 等.化探方法技术之取样粒度研究——以豫西牛头沟金矿1:5万化探普查为例[J].地质与勘探, 2013, 49(5):928-938.

    Google Scholar

    Jia Y J, Gong Q J, Han D Y, et al.Sample granularity of soils and stream sediments in geochemical surveys:A case study of the Niutougou gold deposit, Xiong' erShan gold mine in Western Hennan Province[J].Geology and Exploration, 2013, 49(5):928-938.

    Google Scholar

    [6] 郭玉生.元素的赋存状态、样品粒度、取样量对试样代表性的影响[J].岩矿测试, 1987, 6(2):147-150.

    Google Scholar

    Guo Y S.Effect of elemental occurrence phases, sample size and sampling mass on sample's representation[J].Rock and Mineral Analysis, 1987, 6(2):147-150.

    Google Scholar

    [7] 沈莽庭, 徐鸣, 姚春彦, 等.巴西巴伊亚州阿巴伊拉地区水系沉积物采样粒级方法试验[J].地质找矿论丛, 2015, 30(3):392-399. doi: 10.6053/j.issn.1001-1412.2015.03.011

    CrossRef Google Scholar

    Shen M T, Xu M, Yao C Y, et al.Grain size test for sampling media from river sediments in Arbari area, Bahia state, Brazil[J].Geological Prospecting Series, 2015, 30(3):392-399. doi: 10.6053/j.issn.1001-1412.2015.03.011

    CrossRef Google Scholar

    [8] 张华, 张玉领, 史新民.河北围场幅1:20万区域化探方法技术讨论[J].物探与化探, 2004, 28(1):35-38.

    Google Scholar

    Zhang H, Zhang Y L, Shi X M.A discussion on methods and techniques for 1:200000 geochemical exploration in Weichang sheet, Hebei Province[J].Geophysical & Geochemical Exploration, 2004, 28(1):35-38.

    Google Scholar

    [9] 魏印涛, 邱成贵, 张斌, 等.区域化探方法试验探讨——以胶东半岛莱阳幅1:20万水系沉积物测量为例[J].山东国土资源, 2015, 31(12):54-57. doi: 10.3969/j.issn.1672-6979.2015.12.021

    CrossRef Google Scholar

    Wei Y T, Qiu C G, Zhang B, et al.Study on regional geochemical sampling method-setting stream sediment survey of Laiyang map with the scale of 1:200000 in Jiaodong Peninsula as an example[J].Shandong Land and Resources, 2015, 31(12):54-57. doi: 10.3969/j.issn.1672-6979.2015.12.021

    CrossRef Google Scholar

    [10] Gong Q J, Deng J, Wang C M, et al.Element behaviors due to rock weathering and its implication to geochemical anomaly recognition:A case study on Linglong biotite granite in Jiaodong Peninsula, China[J].Journal of Geochemical Exploration, 2013, 128:14-24. doi: 10.1016/j.gexplo.2013.01.004

    CrossRef Google Scholar

    [11] 王会峰, 彭立华, 安兴, 等.森林沼泽区区域化探新旧方法技术应用效果对比[J].物探与化探, 2008, 32(5):502-508.

    Google Scholar

    Wang H F, Peng L H, An X, et al.The preparation of geochemical speciation certified reference materials for main soil types of China[J].Geophysical & Geochemical Exploration, 2008, 32(5):502-508.

    Google Scholar

    [12] Wang X, Xu S, Zhang B, et al. Deep-penetrating geochemistry for sandstone-type uranium deposits in the Turpan-Hami Basin, North-Western China[J].Applied Geochemistry, 2011, 26(12):2238-2246. doi: 10.1016/j.apgeochem.2011.08.006

    CrossRef Google Scholar

    [13] 徐永利, 郑有业, 徐广东, 等.青海省大柴旦双口山荒漠戈壁景观区1:5万水系沉积物测量采样方法技术研究[J].西北地质, 2012, 45(1):307-316.

    Google Scholar

    Xu Y L, Zheng Y Y, Xu G D, et al.Study on sampling methods for 1:50000 stream sediment geochemical survey in the Go-bi desert landscape area of Shuangkoushan, Dachaidan, Qinghai Province[J].Northwestern Geology, 2012, 45(1):307-316.

    Google Scholar

    [14] 康明, 岑况, 吴悦斌, 等.北山戈壁荒漠景观1:5万地球化学测量方法研究[J].地质与勘探, 2004, 40(3):64-68.

    Google Scholar

    Kang M, Cen K, Wu Y B, et al.1:50000 geochemical prospecting methods and techniques in GoBi desert landscape in the Beishan area, Northwestern China[J].Geology and Exploration, 2004, 40(3):64-68.

    Google Scholar

    [15] 杨帆, 孔牧, 刘华忠, 等.北山干旱荒漠戈壁残山景观1:5万地球化学勘查方法技术的选择[J].物探与化探, 2011, 35(3):308-312.

    Google Scholar

    Yang F, Kong M, Liu H Z, et al.The choice of methods and technologies for 1:50000 geochemical exploration in Beishan arid desert GoBi relict mountain landscape[J]. Geophysical & Geochemical Exploration, 2011, 35(3):308-312.

    Google Scholar

    [16] 冯治汉, 徐家乐.甘肃省景观地球化学特征及区域化探工作方法研究[J].地质与勘探, 2003, 39(6):2-5.

    Google Scholar

    Feng Z H, Xu J L.Landscape geochemistry features and working methods of regional geochemistry in Gansu Province[J]. Geology and Exploration, 2003, 39(6):2-5.

    Google Scholar

    [17] 程志中, 王学求, 谢学锦, 等.黑龙江森林沼泽区超低密度地球化学调查采样介质对比[J].物探与化探, 2005, 29(3):201-204.

    Google Scholar

    Cheng Z Z, Wang X Q, Xie X J, et al.A comparison of sampling media in ultra-low density geochemical investigation in the forest-swamp area of Heilongjiang Province[J].Geophysical & Geochemical Exploration, 2005, 29(3):201-204.

    Google Scholar

    [18] 贾先巧, 张丽春, 任利民, 等.矿区及外围土壤地球化学测量采样深度与粒度方法试验——以江西省九江市城门山铜矿为例[J].地质通报, 2009, 28(7):963-969.

    Google Scholar

    Jia X Q, Zhang C L, Ren L M, et al.Examination of sampling depth and granularity on geochemical soil survey at mining and external areas—Taking the Chengmenshan copper mine, Jiujiang city, Jiangxi Province, China as an Example[J].Geological Bulletin of China, 2009, 28(7):963-969.

    Google Scholar

    [19] 席明杰, 马生明, 赵波, 等.西藏羊八井—青龙地区水系沉积物元素背景值及分布特征[J].岩矿测试, 2014, 33(1):81-89.

    Google Scholar

    Xi M J, Ma S M, Zhao B, et al.The background values and distribution characteristics of stream sediments in the Yangbajain—Qinglong region, Tibet[J].Rock and Mineral Analysis, 2014, 33(1):81-89.

    Google Scholar

    [20] 周向辉, 侯光久.大兴安岭水系沉积物采样介质粒级段对圈定元素异常的影响[J].资源环境与工程, 2008, 22(6):569-576.

    Google Scholar

    Zhou X H, Hou G J.Effect of different mesh of stream sediment sampling media in Daxinganling to delineate element anomalies[J].Resources Environment & Engineering, 2008, 22(6):569-576.

    Google Scholar

    [21] Rose A W, Hawkes H E, Webb J S.Geochemistry in Mineral Exploration[M].London:Academic Press, 1979.

    Google Scholar

    [22] Xu R T.The study on geochemical technology for mineral exploration in the Arid Gobi desert terrain, Beishan mountains area, Gansu[R].Beijing:China University of Geosciences, 2006.

    Google Scholar

    [23] 陈富荣.安徽宁墩地区金钨地球化学异常找矿远景[J].物探与化探, 2010, 34(2):150-153.

    Google Scholar

    Chen F R.Ore-search prospects of gold and tungsten geochemical anomalies in Ningdun area, Anhui Province[J].Geophysical & Geochemical Exploration, 2010, 34(2):150-153.

    Google Scholar

    [24] 佟依坤, 龚庆杰, 韩东昱, 等.化探技术之成矿指示元素组合研究——以豫西牛头沟金矿为例[J].地质与勘探, 2014, 50(4):712-724.

    Google Scholar

    Tong Y K, Gong Q J, Han D Y, et al.Indicator element association in geochemical surveys:A case study of the Niutougou gold deposit in Western Henan Province[J].Geology and Exploration, 2014, 50(4):712-724.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1778) PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint