Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 2
Article Contents

Qi-hua HUANG, Zhi-qiang XU, Wei-wei YANG. Determination of Sulfur in Barite and Pyrite by High Frequency Infrared Carbon-Sulfur Spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135. doi: 10.15898/j.cnki.11-2131/td.2017.02.006
Citation: Qi-hua HUANG, Zhi-qiang XU, Wei-wei YANG. Determination of Sulfur in Barite and Pyrite by High Frequency Infrared Carbon-Sulfur Spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135. doi: 10.15898/j.cnki.11-2131/td.2017.02.006

Determination of Sulfur in Barite and Pyrite by High Frequency Infrared Carbon-Sulfur Spectrometer

  • Most sulfate and sulfide ores are composed of low electrical magnetic materials. In the process of combustion, the sulfur in sulfate and sulfide ores cannot be released completely, because it is difficult to produce a large enough electromagnetic induction eddy current. Thus, the results are lower than real values when the sulfur in sulfate and sulfide ores is determined by High Frequency Infrared Carbon-Sulfur Spectrometer. In this study, the barite and pyrite samples are diluted with silicon dioxide to acquire different contents of sulfur. By optimizing the sample weight and flux types, determination of sulfur by High Frequency Infrared Carbon-Sulfur Spectrometer was developed. Results show that the sample weight is 0.07 g when the content of sulfur is higher than 2% whereas sample weight is 0.1 g when the sulfur content is below 2%. Furthermore, the sulfur in barite and pyrite can be released completely into the infrared absorption area when adding 0.4 g of tin grain, 0.4 g of iron grain, and 0.5 g of tungsten grain to the sample. The recovery of sulfur can reach 95.8%-104.2%(barite) and 95.3%-105.1%(pyrite), which is far higher than the recovery of 83.3%-91.1% and 91.5-97.5% for the conventional analysis of sulfur by Infrared Carbon-Sulfur Spectrometer. This method precision is less than 5% and can determine the accurate content of sulfur.
  • 加载中
  • [1] 史世云, 温宏利, 李冰.高频燃烧-红外碳硫仪测定地质样品中的碳和硫[J].岩矿测试, 2001, 20(4):267-271.

    Google Scholar

    Shi S Y, Wen H L, Li B.Determination of carbon and sulfur in geological samples by high frequency IR-absorption spectrometric method[J].Rock and Mineral Analysis, 2001, 20(4):267-271.

    Google Scholar

    [2] 张世文.HCS系列高频红外碳硫分析仪测定铜铅锌矿石中的硫[J].新疆有色金属, 2014(增刊):145-147.

    Google Scholar

    Zhang S W.Determination of sulfur in copper-lead-zinc ore by HCS series high frequency IR-absorption spectrometric method[J].Journal of Xinjiang Nonferrous Metals, 2014(Supplement):145-147.

    Google Scholar

    [3] 王宝玲.高频红外吸收法快速测定硫精矿中高含量硫[J].冶金分析, 2013, 33(8):52-54.

    Google Scholar

    Wang B L.High frequency infrared absorption method for rapid determination of high content of sulfur in sulfur concentrate[J].Metallurgical Analysis, 2013, 33(8):52-54.

    Google Scholar

    [4] 任旭东, 张术杰, 吴文琪.基于五元助熔剂的高频-红外吸收法测定硅铁中碳、硫含量[J].分析试验室, 2015, 34(6):740-744.

    Google Scholar

    Ren X D, Zhang S J, Wu W Q.High frequency-infrared absorption method for determination of carbon and sulfur content in SiFe based on the pentabasic fluxing agent[J].Chinese Journal of Analysis Laboratory, 2015, 34(6):740-744.

    Google Scholar

    [5] 张明杰, 戴雪峰, 陆丁荣.高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定[J].岩矿测试, 2010, 29(2):139-142.

    Google Scholar

    Zhang M J, Dai X F, Lu D R.Rapid determination of carbon and sulfur in farmland soil samples by high frequency-infrared carbon-sulfur analyzer[J].Rock and Mineral Analysis, 2010, 29(2):139-142.

    Google Scholar

    [6] 莫达松, 刘守廷, 蒋天成.高频红外碳硫分析仪测定土壤、黏土中的硫[J].化学分析计量, 2007, 16(4):54-55.

    Google Scholar

    Mo D S, Liu S T, Jiang T C.Determination of sulfur in soils and clays by high frequency infrared absorption spectrometer[J].Chemical Analysis and Meterage, 2007, 16(4):54-55.

    Google Scholar

    [7] 黎卫亮, 王鹏.直接燃烧红外吸收光谱法测定土壤、水系沉积物中的碳和硫[J].理化检验 (化学分册), 2013, 49(10):1268-1269.

    Google Scholar

    Li W L, Wang P.Determination of carbon and sulfur in soil and stream sediments by direct combustion infrared absorption spectrometric method[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(10):1268-1269.

    Google Scholar

    [8] 张殿英, 刘伟, 李超.红外碳硫测定仪测定铁矿石中硫[J].理化检验 (化学分册), 2002, 38(8):404-405.

    Google Scholar

    Zhang D Y, Liu W, Li C.Determination of sulfur in iron ores with IR spectrometric C/S determinator[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2002, 38(8):404-405.

    Google Scholar

    [9] 肖红新, 庄艾春, 林海山.高频红外吸收法测定铜精矿中高含量硫[J].冶金分析, 2006, 26(2):93-94.

    Google Scholar

    Xiao H X, Zhuang A C, Lin H S.Determination of high content sulfur in copper concentrate by high frequency infrared absorption method[J].Metallurgical Analysis, 2006, 26(2):93-94.

    Google Scholar

    [10] 周琼英.CS-900系列高频红外碳硫分析仪在测定金矿中硫含量的应用[J].新疆有色金属, 2014(增刊):134-135.

    Google Scholar

    Zhou Q Y.Determination of sulfur content in gold by CS-900 series high frequency infrared absorption spectrometer[J].Journal of Xinjiang Nonferrous Metals, 2014(Supplement):134-135.

    Google Scholar

    [11] 张志勇, 陈述, 李子尚.改进的碳酸钠-氧化锌半熔-硫酸钡重量法测定重晶石中的硫[J].岩矿测试, 2015, 34(5):575-578.

    Google Scholar

    Zhang Z Y, Chen S, Li Z S.Determination of sulfur in barite by sodium carbonate-zinc oxide semi-molten decomposition and barium sulfate gravimetric method[J].Rock and Mineral Analysis, 2015, 34(5):575-578.

    Google Scholar

    [12] 李赛峰.三酸溶矿快速重量法测定重晶石中硫酸钡[J].四川建材, 2011, 37(2):104-105.

    Google Scholar

    Li S F.Weight rapid determination barium sulfate in barite by three acid[J].Sichuan Building Materials, 2011, 37(2):104-105.

    Google Scholar

    [13] 刘晓峰, 李子尚, 张志勇.半熔分解硫酸钡重量法测定各类含重晶石矿样中的硫[J].矿冶工程, 2015, 35(1):101-106.

    Google Scholar

    Liu X F, Li Z S, Zhang Z Y.Determining sulfur in various ore samples containing barite by semi-molten decomposition barium sulfate gravimetric method[J].Mining and Metallurgical Engineering, 2015, 35(1):101-106.

    Google Scholar

    [14] 况芳城.高频红外碳硫分析仪测定地质样品中不同含量的硫[J].福建地质, 2013, 32(3):249-254.

    Google Scholar

    Kuang F C.Determination of the different content of sulfur in geological samples by high frequency IR carbon-sulfur analyzer[J].Fujian Geology, 2013, 32(3):249-254.

    Google Scholar

    [15] 王小松, 陈曦, 王小强.高频燃烧-红外吸收光谱法测定钼矿石和镍矿石中的高含量硫[J].岩矿测试, 2013, 32(4):581-585.

    Google Scholar

    Wang X S, Chen X, Wang X Q.Determination of high content sulfur in molybdenum ore and nickel ore using high frequency combustion-infrared absorption spectrometry[J].Rock and Mineral Analysis, 2013, 32(4):581-585.

    Google Scholar

    [16] 赵淑云, 王成, 葛钰玮.高频燃烧-红外碳硫吸收仪快速测定含铜烧结物料中的高含量硫[J].岩矿测试, 2011, 30(3):353-356.

    Google Scholar

    Zhao S Y, Wang C, Ge Y W.Rapid determination of high content sulfur in copper sintering material by high frequency combustion-infrared carbon sulfur absorption apparatus[J].Rock and Mineral Analysis, 2011, 30(3):353-356.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(1682) PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint