Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 2
Article Contents

Xuan HU, Lei SHI, Wei-hua ZHANG. Determination of Sulfur in High-sulfur Bauxite by Alkali Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005
Citation: Xuan HU, Lei SHI, Wei-hua ZHANG. Determination of Sulfur in High-sulfur Bauxite by Alkali Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

Determination of Sulfur in High-sulfur Bauxite by Alkali Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry

  • When Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) is used to analyze the sulfur content of high-sulfur (S≤8%) bauxite, commonly used acid dissolving and alkali fusion methods cannot oxidize sulfur completely, leading to a false (lower) result of sulfur due to multiple valences of sulfur (-2, +4, +6). In this study, high-sulfur bauxite samples were fused with sodium hydroxide and leached out by hot water and hydrochloric acid, and the calibration curve was plotted through a matrix matching method to compensate for the spectral interferences of aluminum and sodium on sulfur. S182.034 nm (184 nm) was selected as the analytical line, and sulfur was analyzed by ICP-OES. Results show that sulfur in high-sulfur bauxite samples is completely oxidized with 3 g sodium peroxide at 700℃ for 10 min. The linear correlation coefficient of the calibration curve was 0.9999, the detection limit was 0.025 μg/mL, and the relative standard deviation (RSD, n=6) was less than 5%. Compared with the results of carbon sulfur analysis, there are no significant differences between the two methods. This method has the advantage of completely decomposing the samples without any loss, which will lay the foundations for the simultaneous determination of sulfur and other elements in high-sulfur bauxite by ICP-OES.
  • 加载中
  • [1] 杨权平, 吕鲜翠.高硫铝土矿生产冶金级氧化铝的工业实践[J].轻金属, 2012(7):10-12.

    Google Scholar

    Yang Q P, Lü X C.The industrial practice of producing metallurgical grade alumina from high sulfur bauxite[J].Light Metals, 2012(7):10-12.

    Google Scholar

    [2] Hu X L, Chen W M, Xie Q L.Sulfur phase and sulfur removal in high sulfur-containing bauxite[J].Transactions of Nonferrous Metals Society of China, 2011, 21(7):1641-1647. doi: 10.1016/S1003-6326(11)60908-4

    CrossRef Google Scholar

    [3] 付世伟.贵州高硫铝土矿开发利用前景分析[J].矿产勘查, 2011, 2(2):159-164.

    Google Scholar

    Fu S W.Prospection analysis of development of high-sulfur bauxite of Guizhou[J].Mineral Exploration, 2011, 2(2):159-164.

    Google Scholar

    [4] Yin J G, Han M R, Yang W Q, et al.Roasting pretreatment of high-sulfur bauxite with low-median grade in Chongqing, China[M].Light Metals, 2015:11-14.DOI:10.1002/9781119093435.ch2.

    Google Scholar

    [5] Ge L, Gong X Z, Wang Z, et al.Sulfur removal from bauxite water slurry (BWS) electrolysis intensified by ultrasonic[J].Ultrasonics Sonochemistry, 2015, 26(9):142-148.

    Google Scholar

    [6] Liu Z W, Li W X, Ma W H, et al.Research on digestion behavior of sulfur in high-sulfur bauxite[M].Light Metals, 2015:39-43.DOI: 10.1002/9781119093435.ch7.

    Google Scholar

    [7] 胡小莲. 高硫铝土矿中硫在溶出过程中的行为及除硫工艺研究[D]. 长沙: 中南大学, 2011: 16-20.

    Google Scholar

    Hu X L.Study on the behavior of sulfur during the digestion process of high sulfur-containing bauxite and on the process of sulfur removal[D].Changsha:Central South University, 2011:16-20.

    Google Scholar

    [8] 唐华应, 方艳, 刘惠丽.电感耦合等离子体原子发射光谱法测定钒铁中硫含量[J].冶金分析, 2013, 33(9):70-72.

    Google Scholar

    Tang H Y, Fang Y, Liu H L.Determination of sulfur in ferrovanadium by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(9):70-72.

    Google Scholar

    [9] 苏凌云.低温逆王水溶样-电感耦合等离子体原子发射光谱法测定铁矿中硫和磷[J].冶金分析, 2014, 34(11):69-72.

    Google Scholar

    Su L Y.Determination of sulfur and phosphorus in iron ore by inductively coupled plasma atomic spectrometry after sample dissolution with inverse aqua reqia in low temperature[J].Metallurgical Analysis, 2014, 34(11):69-72.

    Google Scholar

    [10] 薛静, 李清昌.电感耦合等离子体发射光谱法测定矿物中的常量硫[J].有色矿冶, 2013, 29(3):95-97.

    Google Scholar

    Xue J, Li Q C.Determination of constant sulfur in mineral by ICP-AES[J].Non-ferrous Mining and Metallurgy, 2013, 29(3):95-97.

    Google Scholar

    [11] 杜米芳, 任红灿, 岑治宝, 等.微波消解-电感耦合等离子体发射光谱法同时测定白云石中铁铝钙镁钾钠硫[J].岩矿测试, 2006, 25(3):276-278.

    Google Scholar

    Du M F, Ren H C, Cen Z B, et al.Simultaneous determination of Fe, Al, Ca, Mg, K, Na, S in dolomite samples by ICP-AES with microwave digestion[J].Rock and Mineral Analysis, 2006, 25(3):276-278.

    Google Scholar

    [12] 陈广志, 苏明跃, 王昊云.微波消解-电感耦合等离子体发射光谱法测定煤中磷[J].岩矿测试, 2011, 30(4):477-480.

    Google Scholar

    Chen G Z, Su M Y, Wang H Y.Determination of phosphorus in coal samples by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2011, 30(4):477-480.

    Google Scholar

    [13] 年季强, 顾锋, 朱春要, 等.微波消解-电感耦合等离子体原子发射光谱法测定萤石中硅铁镁钾钠磷硫[J].冶金分析, 2015, 35(4):39-43.

    Google Scholar

    Nian J Q, Gu F, Zhu C Y, et al.Determination of silicon, ferric, magnesium, potassium, sodium, phosphorus and sulphur in fluorite by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(4):39-43.

    Google Scholar

    [14] 王琰, 孙洛新, 张帆, 等.电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J].岩矿测试, 2013, 32(5):719-723.

    Google Scholar

    Wang Y, Sun L X, Zhang F, et al.Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(5):719-723.

    Google Scholar

    [15] 金献忠, 谢健梅, 梁帆, 等.碱熔融-电感耦合等离子体原子发射光谱法测定铬矿石中铬铝铁镁硅[J].冶金分析, 2010, 30(1):29-33.

    Google Scholar

    Jin X Z, Xie J M, Liang F, et al.Determination of chromium, aluminum, iron, magnesium and silicon in chromium ore by alkali fusion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2010, 30(1):29-33.

    Google Scholar

    [16] 高小飞, 倪文山, 姚明星, 等.电感耦合等离子体原子发射光谱法测定黑钨精矿中痕量硫磷[J].冶金分析, 2012, 32(6):30-33.

    Google Scholar

    Gao X F, Ni W S, Yao M X, et al.Determination of trace sulfur and phosphorus in wolframite concentrate by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(6):30-33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(1)

Article Metrics

Article views(3693) PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint