Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 5
Article Contents

Fu-liang WANG, Yong FU, Ran JIANG, Wen-xi ZHOU, Zhi-hua GE, Shuai-chao WEI, Hou-peng LIANG, Peng ZHANG. Research Progress on Re-Os Isotopes Application in Dating and Paleoenvironmental Interpretation during the Neoproterozoic to Early Cambrian Periods[J]. Rock and Mineral Analysis, 2016, 35(5): 530-541. doi: 10.15898/j.cnki.11-2131/td.2016.05.012
Citation: Fu-liang WANG, Yong FU, Ran JIANG, Wen-xi ZHOU, Zhi-hua GE, Shuai-chao WEI, Hou-peng LIANG, Peng ZHANG. Research Progress on Re-Os Isotopes Application in Dating and Paleoenvironmental Interpretation during the Neoproterozoic to Early Cambrian Periods[J]. Rock and Mineral Analysis, 2016, 35(5): 530-541. doi: 10.15898/j.cnki.11-2131/td.2016.05.012

Research Progress on Re-Os Isotopes Application in Dating and Paleoenvironmental Interpretation during the Neoproterozoic to Early Cambrian Periods

More Information
  • The Neoproterozoic to Early Cambrian period is a very important era in the history of earth evolution. Research on stratigraphic framework, paleo-oceanography, palaro-atmospheric, and paleoclimatology are focuses of international geosciences. As a new stratigraphic dating method, Re-Os isotopic dating was developed rapidly in the last decades. It has dual advantages of dating and tracing the paleoenvironment for the organic-rich black shale deposited at the important timing turning points during Neoproterozoic to Early Cambrian. Taking the Neoproterozoic to Early Cambrian strata as an example, the application of the Re-Os isotopic dating method in chronostratigraphy is described in this paper and the reliability of the Re-Os dating method by comparison with numerous precise zircon U-Pb ages is confirmed. This method has played an important role in the research of the building order in the Doushantuo Formation and the sedimentary time of the Liuchapo Formation. Combining previous Sr isotope curves with the initial 187Os/188Os ratios of Neoproterozoic to Early Cambrian strata, the role of Os isotopes in the interpretation of the paleoenvironment and tracing the source of Ni-Mo-V polymetallic layers is discussed. Sr isotope analysis is difficult to conduct on black shales, while initial 187Os/188Os can complement this defect. Therefore, the mutual combination of these two methods can contribute to the exploration of the paleoenvironment during Neoproterozoic to Early Cambrian. Finally, with the development of Re-Os isotope analysis technology and establishment of more experiment processes, it will produce a significant effect on the study of future chronostratigraphy, especially on the age-determination of the older strata.
  • 加载中
  • [1] Zhu M Y, Strauss H, Shields G A.From Snow Ball Earth to the Cambrian Bioradiation:Calibration of Ediacaran-Cambrian Earth History in South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1-2):1-6. doi: 10.1016/j.palaeo.2007.03.026

    CrossRef Google Scholar

    [2] 朱茂炎.动物的起源和寒武纪大爆发:来自中国的化石证据[J].古生物学报, 2010, 49(3):269-287.

    Google Scholar

    Zhu M Y.The Origin and Cambrian Explosion of Animals:Fossil Evidences from China[J].Acta Palaeontologica Sinica, 2010, 49(3):269-287.

    Google Scholar

    [3] Herwatz D, Pack A, Krylov D, et al. Revealing the Climate of Snowball Earth from Δ17O Systematics of Hydrothermal Rocks[J].Proceeding of the National Academy of Science, 2015, 117(12):5337-5341.

    Google Scholar

    [4] Nekrasov G E, Bogomolov E S.Ophiolites of the Ust-Belskii Terrane (Chukotka):A Consequence of Late Precambrian Breakup of the Rodinia Supercontinent in Structures of the NE Framing of the Siberian Craton (Structural, Petrological-Mineralogical, and Isotope Data)[J].Doklady Earth Sciences, 2015, 461(2):351-355. doi: 10.1134/S1028334X15040224

    CrossRef Google Scholar

    [5] Nekrasov G E, Bogomolov E S.Ophiolites of the Ust-Belskii Terrane (Chukotka):A Consequence of Late Precambrian Breakup of the Rodinia Supercontinent in Structures of the NE Framing of the Siberian Craton (Structural, Petrological-Mineralogical, and Isotope Data)[J].Doklady Earth Sciences, 2015, 461(2):351-355. doi: 10.1134/S1028334X15040224

    CrossRef Google Scholar

    [6] Gernon T M, Hincks T K, Tyrrell T, et al.Snowball Earth Ocean Chemistry Driven by Extensive Ridge Volcanism during Rodinia Breakup[J].Nature Geoscience, 2016, 9:1-9.

    Google Scholar

    [7] Gordienko I V, Metelkin D V.The Evolution of the Sub-duction Zone Magmatism on the Neoproterozoic and Early Paleozoic Active Margins of the Paleoasian Ocean[J].Russian Geology & Geophysics, 2016, 57(1):69-81.

    Google Scholar

    [8] 李三忠, 杨朝, 赵淑娟, 等.全球早古生代造山带(Ⅳ):板块重建与Carolina超大陆[J].吉林大学学报(地球科学版), 2016, 46(4):1026-1041.

    Google Scholar

    Li S Z, Yang Z, Zhao S J, et al.Global Early Paleozoic Orogens(Ⅳ):Plate Reconstruction and Supercontinent Carolina[J].Journal of Jilin University (Earth Science Edition), 2016, 46(4):1026-1041.

    Google Scholar

    [9] Yu W C, Algeo T J, Du Y S, et al.Genesis of Cryogenian Datangpo Manganese Deposit:Hydrothermal Influence and Episodic Post-glacial Ventilation of Nanhua Basin, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459:321-337. doi: 10.1016/j.palaeo.2016.05.023

    CrossRef Google Scholar

    [10] 朱祥坤, 彭乾云, 张仁彪, 等.贵州省松桃县道坨超大型锰矿床地质地球化学特征[J].地质学报, 2013, 87(9):1335-1348.

    Google Scholar

    Zhu X K, Peng Q Y, Zhang R B, et al.Geological and Geochemical Characteristics of the Daotuo Super-large Manganese Ore Deposit an Songtao County in Guizhou Province[J].Acta Geologica Sinica, 2013, 87(9):1335-1348.

    Google Scholar

    [11] 张飞飞, 闫斌, 郭跃玲, 等.湖北古城锰矿的沉淀形式及其古环境意义[J].地质学报, 2013, 87(2):245-258.

    Google Scholar

    Zhang F F, Yan B, Guo Y L, et al.Precipitation Form of Manganese Ore Deposits in Gucheng, Huibei Province, and Its Paleoenvironment Implication[J].Acta Geologica Sinica, 2013, 87(2):245-258.

    Google Scholar

    [12] 裴浩翔, 付勇, 徐志刚, 等.贵州道坨锰矿菱锰矿的稀土元素特征[J].沉积与特提斯地质, 2015, 35(1):76-85.

    Google Scholar

    Pei H X, Fu Y, Xu Z G, et al.REE Characteristics of Rhodochrosite from the Daotuo Manganese Deposit in Guizhou[J].Sedimentary Geology and Tethyan Geology, 2015, 35(1):76-85.

    Google Scholar

    [13] Xu L G, Lehmann B, Mao J W. Seawater Contribution to Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian black Shales of South China:Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry[J].Ore Geology Reviews, 2013, 52(6):66-84.

    Google Scholar

    [14] Han T, Zhu K L, Jiang L, et al.Metal Sources for the Polymetallic Ni-Mo-PGE Mineralization in the Black Shales of the Lower Cambrian Niutitang Formation, South China[J].Ore Geology Reviews, 2015, 67:158-169. doi: 10.1016/j.oregeorev.2014.11.020

    CrossRef Google Scholar

    [15] 范德廉, 张熹, 叶杰编著.中国的黑色岩系及其有关矿床[M].北京:科学出版社, 2004:1-438.

    Google Scholar

    Fan D L, Zhang X, Ye J.The Blake Rock Series in China and Its Related Mineral Deposits[M].Beijing:Science Press, 2004:1-438.

    Google Scholar

    [16] 韩善楚, 胡凯, 曹剑.贵州天柱早寒武世黑色岩系重晶石矿床有机地球化学研究[J].地球化学, 2014, 43(4):386-398.

    Google Scholar

    Han S C, Hu K, Cao J.Organic Geochemistry of Barite Deposits Hosted in the Early Cambrian Black Shales from the Tianzhu County, Guizhou Province[J].Geochimica, 2014, 43(4):386-398.

    Google Scholar

    [17] 侯东壮, 吴湘滨, 李贞, 等.贵州省天柱大河边重晶石矿床成矿物质来源[J].中国有色金属学报, 2015, 25(4):1039-1048.

    Google Scholar

    Hou D Z, Wu X B, Li Z, et al.Ore-forming Material Sources of Dahebian Barite Deposit in Tianzhu County, Guizhou Province, China[J].The Chinese Journal of Nonferrous Metals, 2015, 25(4):1039-1048.

    Google Scholar

    [18] Kasemannet S A, Hawkesworth C J, Prave A R, et al.Boron and Calcium Isotope Composition in Neoproterozoic Carbonate Rocks from Namibia:Evidence for Extreme Environmental Change[J].Earth and Planetary Science Letters, 2005, 231(Supplement 1-2):73-86.

    Google Scholar

    [19] Giddings J A, Wallace M W.Sedimentology and C-isotope Geochemistry of the "Sturtian" Cap Carbonate, South Australia[J].Sedimentary Geology, 2009, 216(1-2):1-14. doi: 10.1016/j.sedgeo.2009.01.007

    CrossRef Google Scholar

    [20] Mcarthur J M, Burnett J, Hancock J M.Strontium Isotopes at K/T Boundary[J].Nature, 1992, 355(6355):28. doi: 10.1038/355028a0

    CrossRef Google Scholar

    [21] 李超, 屈文俊, 王登红, 等.富有机质地质样品Re-Os同位素体系研究进展[J].岩石矿物学杂志, 2010, 24(4):421-430.

    Google Scholar

    Li C, Qu W J, Wang D H, et al.Advances in the Study of the Re-Os Isotope System of Organic-rich Samples[J].Acta Petrologica et Mineralogica, 2010, 24(4):421-430.

    Google Scholar

    [22] Cohen A S.The Rhenium-Osmium Isotope System:Applications to Geochronological and Palaeoenviron-mental Problems[J].Journal of the Geological Society, 2004, 161(5):729-734.

    Google Scholar

    [23] Yang G, Hannah J L, Zimmerman A, et al.Re-Os Depositional Age for Archean Carbonaceous Slates from the Southwestern Superior Province:Challenges and Insights[J].Earth and Planetary Science Letters, 2009, 280(1):83-92.

    Google Scholar

    [24] Akira I, Pearsona D G, Dalea C W.Ancient Os Isotope Signatures from the Ontong Java Plateau Lithosphere:Tracing Lithospheric Accretion History[J].Earth & Planetary Science Letters, 2011, 301(1-2):159-170.

    Google Scholar

    [25] Mao J W, Lehmann B, Du A D, et al.Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance[J].Economic Geology, 2002, 97(5):1051-1061. doi: 10.2113/gsecongeo.97.5.1051

    CrossRef Google Scholar

    [26] Xu L G, Lehmann B, Mao J W, et al.Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Blake Shales of South China-A Reassessment[J].Economic Geology, 2011, 106(3):511-522. doi: 10.2113/econgeo.106.3.511

    CrossRef Google Scholar

    [27] Fu Y, Dong L, Li C, et al.New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation[J].Journal of Earth Science, 2016, 27(2):1-11.

    Google Scholar

    [28] 李超, 屈文俊, 王登红, 等.Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J].地球学报, 2014, 35(4):405-414.

    Google Scholar

    Li C, Qu W J, Wang D H, et al.The Progress of Applying Re-Os Isotope to Dating of Organic-rich, Sedimentary Rocks and Reconstruction of Palaeoenvironment[J].Acta Geoscientica Sinica, 2014, 35(4):405-414.

    Google Scholar

    [29] Cohen A S, Coe A L, Bartlett J M.Precise Re-Os Ages of Organic-rich Mudrocks and the Os Isotope Composition of Jurassic Seawater[J].Earth and Planetary Science Letters, 1999, 167(3-4):159-173. doi: 10.1016/S0012-821X(99)00026-6

    CrossRef Google Scholar

    [30] Yoshiro Y, Yoshio T, Hiromitsu H.Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems[J].Geochimica et Cosmochimica Acta, 2007, 71:3458-3475. doi: 10.1016/j.gca.2007.05.003

    CrossRef Google Scholar

    [31] Kendall B, Robert A, Selby D.187Re-187Os Geochronology of Precambrian Organic-rich Sedimentary Rocks[J].Geological Society, 2009, 326(5):85-107.

    Google Scholar

    [32] Ceaser R A, Sannigrahi P, Chacko T, et al.Further Evaluation of the Re-Os Geochronometer in Organic-rich Sedimentary Rocks:A Test of Hydrocarbon Maturation Effects in the Exshaw Formation, Western Canada Sedimentary Basin[J].Geochimica et Cosmochimica Acta, 2002, 66(19):3441-3452. doi: 10.1016/S0016-7037(02)00939-0

    CrossRef Google Scholar

    [33] 刘华, 屈文俊, 王英滨, 等.用三氧化铬-硫酸溶剂对黑色页岩铼-锇定年方法初探[J].岩矿测试, 2008, 27(4):245-249.

    Google Scholar

    Liu H, Qu W J, Wang Y B, et al.Primary Study on Re-Os Isotopic Dating of Black Shale Using CrO3-H2SO4-Carius Tube-Inductively Coupled Plasma Mass Spectrometry System[J].Rock and Mineral Analysis, 2008, 27(4):245-249.

    Google Scholar

    [34] 杜安道, 屈文俊, 李超, 等.铼-锇同位素定年方法及分析测试技术进展[J].岩矿测试, 2009, 28(3):288-304.

    Google Scholar

    Du A D, Qu W J, Li C, et al.A Review on the Development of Re-Os Isotopic Dating Methods and Techniques[J].Rock and Mineral Analysis, 2009, 28(3):288-304.

    Google Scholar

    [35] Kennedy M J, Runnegar B, Hoffmann K H, et al.Two or Four Neoproterozoic Glaciations?[J].Geology, 1998, 26(12):1059-1063. doi: 10.1130/0091-7613(1998)026<1059:TOFNG>2.3.CO;2

    CrossRef Google Scholar

    [36] Knoll A H.Learning to Tell Neoproterozoic Time[J].Precambrian Research, 2000, 100:3-20. doi: 10.1016/S0301-9268(99)00067-4

    CrossRef Google Scholar

    [37] Walter M R, Veevers J J, Calver C R, et al.Dating the 840-544 Ma Neoproterozoic Interval by Isotopes of Strontium, Carbon, and Sulfur in Seawater and Some Interpretative Models[J].Precambrian Research, 2000, 100(1-3):371-433. doi: 10.1016/S0301-9268(99)00082-0

    CrossRef Google Scholar

    [38] Schaefer B F, Burgess J M.Re-Os Isotopic Age Constraints on Deposition in the Neoproterozoic Amadeus Basin:Implications for the'Snowball Earth'[J].Geological Society, 2003, 160:825-828. doi: 10.1144/0016-764903-050

    CrossRef Google Scholar

    [39] 张启锐, 储雪蕾.扬子地区江口冰期地层的划分对比与南华系层型剖面[J].地层学杂志, 2006, 30(4):306-314.

    Google Scholar

    Zhang Q R, Chu X L.The Stratigraphic Classification and Correlation of the Jiangkou Glacication in the Yangtze Block and the Stratotype Section of the Nanhuan System[J].Journal of Stratigraphy, 2006, 30(4):306-314.

    Google Scholar

    [40] Wang J, Li Z X.History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-up[J].Precambrian Research, 2003, 122(1-4):141-158. doi: 10.1016/S0301-9268(02)00209-7

    CrossRef Google Scholar

    [41] 黄晶, 储雪蕾, 张启锐, 等.新元古代冰期及其年代[J].地学前缘, 2007, 14(2):249-256.

    Google Scholar

    Huang J, Chu X L, Zhang Q R, et al.Constraints on the Age of Neoproterozoic Global Glaciations[J].Earth Science Frontiers, 2007, 14(2):249-256.

    Google Scholar

    [42] 赵彦彦, 郑永飞.全球新元古代冰期的记录和时限[J].岩石学报, 2011, 27(2):545-565.

    Google Scholar

    Zhao Y Y, Zheng Y F.Record and Time of Neoproterozoic Glaciations on Earth[J].Acta Petrologica Sinica, 2011, 27(2):545-565.

    Google Scholar

    [43] Zhou C M, Tucker R, Xiao S H, et al.New Constraints on the Ages of Neoproterozoic Glaciations in South China[J].Geology, 2004, 32(5):437-440. doi: 10.1130/G20286.1

    CrossRef Google Scholar

    [44] Kendall B, Creaser R A, Selby D.Re-Os Geochronology of Postglacial Black Shales in Australia:Constraints on the Timing of "Sturtian" Glaciation[J].Geological Society of America, 2006, 34(9):729-732.

    Google Scholar

    [45] 尹崇玉, 王砚耕, 唐烽, 等.贵州松桃南华系大塘坡组凝灰岩锆石SHRIMP Ⅱ U-Pb年龄[J].地质学报, 2006, 80(2):273-278.

    Google Scholar

    Yin C Y, Wang Y G, Tang F, et al.SHRIMP Ⅱ U-Pb Zircon Date from the Nanhuan Datangpo Formation in Songtao County, Guizhou Province[J].Acta Geologica Sinica, 2006, 80(2):273-278.

    Google Scholar

    [46] Zhang S H, Jiang G Q, Han Y G.The Age of the Nantuo Formation and Nantuo Glaciation in South China[J].Terra Nova, 2008, 20(4):289-294. doi: 10.1111/ter.2008.20.issue-4

    CrossRef Google Scholar

    [47] Liu P J, Li X H, Chen S M.New SIMS U-Pb Zircon Age and Its Constraint on the Beginning of the Nantuo Glaciation[J].Chinese Science Bulletin, 2015, 60(10):958-963.

    Google Scholar

    [48] Li C, Gordon D L, Lyon T W, et al.Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China[J].Earth and Planetary Science Letters, 2012, 331-332(2):246-256.

    Google Scholar

    [49] Yin L M, Zhu M Y, Knoll A H, et al.Doushantuo Embryos Preserved inside Diapause Egg Cysts[J].Nature, 2007, 446(3):661-663.

    Google Scholar

    [50] Zhu M Y, Gehling J G, Xiao S H, et al.Eight-armed Ediacaran Fossil Preserved in Contrasting Taphonomic Windows from China and Australia[J].Geology, 2008, 36(11):867-870. doi: 10.1130/G25203A.1

    CrossRef Google Scholar

    [51] Chen J Y, Bottjer D J, Davidson E H, et al. Phase Contrast Synchrotron X-ray Microtomography of Ediacaran (Doushantuo) Metazoan Microfossils:Phylogenetic Diversity and Evolutionary Implications[J].Precambrian Research, 2010, 179(1-4):191-200. doi: 10.1016/j.precamres.2010.03.003

    CrossRef Google Scholar

    [52] Barfod G H, Albar D F, Knoll A H, et al.New Lu-Hf and Pb-Pb Age Constraints on the Earliest Animal Fossils[J].Earth and Planetary Science Letters, 2002, 201(1):203-212. doi: 10.1016/S0012-821X(02)00687-8

    CrossRef Google Scholar

    [53] Yin C Y, Tang F, Liu Y Q, et al.New U-Pb Zircon Ages from the Ediacaran (Sinian) System Age of in the Yangtze Gorges:Constraint on the Miaohe Biota and Marinoan Glaciation[J].Geological Bulletin of China, 2005, 24:393-400.

    Google Scholar

    [54] Condon D, Zhu M Y, Bowring S, et al.U-Pb Ages from the Neoproterozoic Doushantuo Formation, China[J].Science, 2005, 308(5718):95-98. doi: 10.1126/science.1107765

    CrossRef Google Scholar

    [55] Zhu B, Becker H, Jiang S Y.Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China[J].Precambrian Research, 2013, 225:67-76. doi: 10.1016/j.precamres.2012.02.002

    CrossRef Google Scholar

    [56] 杨爱华, 朱茂炎, 张俊明, 等.扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比[J].古地理学报, 2015, 17(1):1-20.

    Google Scholar

    Yang A H, Zhu M Y, Zhang J M, et al.Sequence Stratigraphic Subdivision and Correlation of the Ediacaran (Sinian) Doushantuo Formation of Yangtze Plate, South China[J].Journal of Palaeogeography, 2015, 17(1):1-20.

    Google Scholar

    [57] 薛耀松, 唐天福, 俞从流.皖南与湘西晚震旦世地层的划分与对比[J].地层学杂志, 1989, 13(1):52-58.

    Google Scholar

    Xue Y S, Tang T F, Yu C L.Stratigraphical Division and Correlation at Late Sinian in South of Anhui and West of Hunan[J].Journal of Stratigraphy, 1989, 13(1):52-58.

    Google Scholar

    [58] 王约, 黄再琴, 陈洪德, 等.华南留茶坡组与灯影组的地层对比[J].吉林大学学报(地球科学版), 2012, 42(增刊):328-335.

    Google Scholar

    Wang Y, Huang Z Q, Chen H D, et al.Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China[J].Journal of Jilin University (Earth Science Edition), 2012, 42(Supplement):328-335.

    Google Scholar

    [59] Chen D Z, Wang J G, Qing H R, et al.Hydrothermal Venting Activities in the Early Cambrian, South China:Petrological, Geochronological and Stable Isotopic Constraints[J].Chemical Geology, 2009, 258(3-4):168-181. doi: 10.1016/j.chemgeo.2008.10.016

    CrossRef Google Scholar

    [60] Chen D Z, Zhou X Q, Fu Y, et al.New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China[J].Terra Nova, 2015, 27(1):62-68. doi: 10.1111/ter.12134

    CrossRef Google Scholar

    [61] Amthor J E, Grotzinger J P, Schroder S, et al.Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian Boundary in Oman[J].Geology, 2003, 31(5):431-434. doi: 10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2

    CrossRef Google Scholar

    [62] Wang H Y, Li C, Hu C Y.Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca.635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir[J].Journal of Earth Science, 2015, 27(6):883-892.

    Google Scholar

    [63] 叶连俊编著.生物有机质成矿作用[M].北京:海洋出版社, 1996:1-225.

    Google Scholar

    Ye L J.The Mineralization of Biological Organic Matter[M].Beijing:Ocean Press, 1996:1-225.

    Google Scholar

    [64] Jenkins J F, Cooper J A, Compston W.Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China[J].Journal of the Geological Society, 2002, 159(6):645-658. doi: 10.1144/0016-764901-127

    CrossRef Google Scholar

    [65] Jiang S Y, Pi D H, Heubeck C, et al.Early Cambrian Ocean Anoxia in South China[J].Nature, 2009, 459(7248):E5-E6. doi: 10.1038/nature08048

    CrossRef Google Scholar

    [66] Wang X Q, Shi X Y, Jiang G Q, et al.New U-Pb Age from the Basal Niutitang Formation in South China:Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition[J].Journal of Asian Earth Sciences, 2012, 48(8):1-8.

    Google Scholar

    [67] Levasseur S, Brick J L, Allegre C J.The Osmium Riverine Flux and the Oceanic Mass Balance of Osmium[J].Earth and Planetary Science Letters, 1999, 174(Supplement 1-2):7-23.

    Google Scholar

    [68] Maloof A C, Porter S M, Moore J L, et al.The Earliest Cambrian Record of Animals and Ocean Geochemical Change[J].Geological Society of America Bulletin, 2010, 122(11-12):1731-1774. doi: 10.1130/B30346.1

    CrossRef Google Scholar

    [69] Sharma M, Papanastassiou D A, Wasserburg G J.The Concentration and Isotopic Composition of Osmium in Tile Oceans[J].Geochimica et Cosmochimica Acta, 1997, 61(16):3287-3299. doi: 10.1016/S0016-7037(97)00210-X

    CrossRef Google Scholar

    [70] 王浩, 凌文黎, 段瑞春, 等.扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义[J].地球科学——中国地质大学学报, 2012, 37(3):451-462.

    Google Scholar

    Wang H, Ling W L, Duan R C, et al.Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(3):451-462.

    Google Scholar

    [71] 杨雪, 李超, 李欣尉, 等.半封闭硝酸溶解体系ICP-MS快速测定辉钼矿的Re-Os年龄及Re含量[J].岩矿测试, 2016, 35(1):24-31.

    Google Scholar

    Yang X, Li C, Li X W, et al.A Rapid Method to Determine the Re-Os Age and Re Content of Molybdenite by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2016, 35(1):24-31.

    Google Scholar

    [72] 李超, 屈文俊, 王登红, 等.石灰岩铼-锇同位素分析方法研究及应用初探[J].岩矿测试, 2011, 30(3):259-264.

    Google Scholar

    Li C, Qu W J, Wang D H, et al.Research and Preliminary Application of Re-Os Isotope System for Limestone Samples[J].Rock and Mineral Analysis, 2011, 30(3):259-264.

    Google Scholar

    [73] 赵鸿, 李超, 江小均, 等.Re-Os同位素精确厘定长兴"金钉子"灰岩沉积年龄[J].科学通报, 2015, 60(23):2209-2215. doi: 10.1360/N972015-00409

    CrossRef Google Scholar

    Zhao H, Li C, Jiao X J, et al.Direct Radiometric Dating of Limestone from Changxing Permian-Triassic Boundary Using the Re-Os Geochronometer[J].Chinese Science Bulletin, 2015, 60(23):2209-2215. doi: 10.1360/N972015-00409

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2312) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint