Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

FAN Jichao, JIANG Qiping, WANG Yanbo, LI Wengang, WANG Jie, LIU Hang. Fracture Propagation Law and Controlling Factors of Hydraulic Fracturing Based on Micro Seismic Monitoring[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 22-28. doi: 10.13779/j.cnki.issn1001-0076.2025.08.005
Citation: FAN Jichao, JIANG Qiping, WANG Yanbo, LI Wengang, WANG Jie, LIU Hang. Fracture Propagation Law and Controlling Factors of Hydraulic Fracturing Based on Micro Seismic Monitoring[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 22-28. doi: 10.13779/j.cnki.issn1001-0076.2025.08.005

Fracture Propagation Law and Controlling Factors of Hydraulic Fracturing Based on Micro Seismic Monitoring

  • Hydraulic fracturing was the key technology to weaken the hard roof of coal seam and solve the dynamic disasters such as strong underground pressure and large area hanging roof. Accurately understanding the propagation law of hard roof fractures during hydraulic fracturing is of great significance for precise fracturing construction and effect evaluation. Taking the hydraulic fracturing project of a mine in northern Shaanxi as the object, the microseismic monitoring technology was used to monitor the process of fracture expansion in the process of roof fracturing, reveal the law of roof fracture propagation law, evaluate the effect of roof hydraulic fracturing and discuss its influencing factors. The microseismic monitoring results indicate that in the process of hydraulic fracturing of the hard roof of the 4203 working face, the roof cracks dynamically expand on both sides with the progress of fracturing, and the final extension range of cracks on the side of transportation roadway is 26 ~ 33 m, and that of the auxiliary transportation roadway is 30 ~ 42 m. The verification of the pressure relief drilling show that the fracture range on the side of the auxiliary roadway is up to 42 m, which is basically consistent with the microseismic monitoring results, indicating that the fracture has been extended to the bottom of the pressure relief hole, and the hydraulic fracturing effect is better. In the process of hydraulic fracturing, the expansion range of fracturing fracture is positively correlated with pressure and fracturing time, and the expansion range of fracturing fracture is also related to the goaf. The results provide the groundwork for the extensive use of microseismic monitoring technologies in the coal mining industry and offer a scientific basis for precisely assessing the hydraulic fracturing effect of the hard top plate in the working face.

  • 加载中
  • [1] 杨俊哲, 郑凯歌, 王振荣, 等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报, 2020, 45(10): 3371−3379.

    Google Scholar

    YANG J Z, ZHENG K G, WANG Z R, et al. The mechanism of overburden dynamic disasters and its control technology in top−coal caving in the mining of thick coal seams[J]. Journal of China Coal Society, 2020, 45(10): 3371−3379.

    Google Scholar

    [2] 赵同彬, 郭伟耀, 谭云亮, 等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报, 2016, 41(7): 1659−1666.

    Google Scholar

    ZHAO T B, GUO W Y, TAN Y L, et al. Mechanics mechanism of rock burst caused by mining in the variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659−1666.

    Google Scholar

    [3] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(8): 2091−2098.

    Google Scholar

    PAN Y S. Disturbance response instability theory of rock−burst in coal mine[J]. Journal of China Coal Society, 2018, 43(8): 2091−2098.

    Google Scholar

    [4] 康红普, 冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术, 2017, 45(1): 1−9.

    Google Scholar

    KANG H P, FENG Y J. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology, 2017, 45(1): 1−9.

    Google Scholar

    [5] 张俭, 郑凯歌, 仵胜利, 等. 水力压裂技术在黄陵二矿的工程试验研究[J]. 煤炭工程, 2017, 49(9): 72−74+79.

    Google Scholar

    ZHANG J, ZHENG K G, WU S L, et al. Engineering test research of hydraulic fracturing technology in Huangling No. 2 Mine[J]. Coal Engineering, 2017, 49(9): 72−74+79.

    Google Scholar

    [6] 韩保山. 低渗煤层压裂机理及应用[J]. 煤田地质与勘探, 2016, 44(3): 25−29+35. doi: 10.3969/j.issn.1001-1986.2016.03.005

    CrossRef Google Scholar

    HAN B S. Research on fracturing mechanism of low permeability coal seam and application of surface CBM drainage[J]. Coal Geology & Exploration, 2016, 44(3): 25−29+35. doi: 10.3969/j.issn.1001-1986.2016.03.005

    CrossRef Google Scholar

    [7] 康红普, 冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报, 2012, 37(12): 1953−1959.

    Google Scholar

    KANG H P, FENG Y J. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society, 2012, 37(12): 1953−1959.

    Google Scholar

    [8] 朱海波, 杨心超, 王瑜, 等. 水力压裂微地震监测的震源机制反演方法应用研究[J]. 石油物探, 2014, 53(5): 556−561. doi: 10.3969/j.issn.1000-1441.2014.05.008

    CrossRef Google Scholar

    ZHU H B, YANG X C, WANG Y, et al. The application of microseismic source mechanism inversion in hydraulic fracturing monitoring[J]. Geophysical Prospecting for Petroleum, 2014, 53(5): 556−561. doi: 10.3969/j.issn.1000-1441.2014.05.008

    CrossRef Google Scholar

    [9] 赵睿, 范涛, 李宇腾, 等. 钻孔瞬变电磁探测在水力压裂效果检测中的应用[J]. 煤田地质与勘探, 2020, 48(4): 41−45. doi: 10.3969/j.issn.1001-1986.2020.04.006

    CrossRef Google Scholar

    ZHAO R, FAN T, LI Y T, et al. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. Coal Geology & Exploration, 2020, 48(4): 41−45. doi: 10.3969/j.issn.1001-1986.2020.04.006

    CrossRef Google Scholar

    [10] 李 好. 无线电波坑道透视法在煤矿井下水力压裂效果评价中的应用[J]. 物探与化探, 2017, 41(4): 741−747.

    Google Scholar

    LI H. The application of radio wave tunnel penetration methodto evaluating fracturing effect in underground coal mine[J]. Geophysicaland Geochemical Exploration, 2017, 41(4): 741−747.

    Google Scholar

    [11] 闫江平, 庞长庆, 段建华, 等. 煤矿井下水力压裂范围微震监测技术及其影响因素[J]. 煤田地质与勘探, 2019, 47(S1): 92−97. doi: 10.3969/j.issn.1001-1986.2019.S1.018

    CrossRef Google Scholar

    YAN J P, PANG C Q, DUAN J H, et al. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. Coal Geology & Exploration, 2019, 47(S1): 92−97. doi: 10.3969/j.issn.1001-1986.2019.S1.018

    CrossRef Google Scholar

    [12] 李楠, 王恩元, GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报, 2017, 42(1): 83−96.

    Google Scholar

    LI N, WANG E Y, GE M C. Microseismic monitoring technique and its applications at coal mines present status and future prospects[J]. Journal of China Coal Society, 2017, 42(1): 83−96.

    Google Scholar

    [13] 张坤, 方海, 李邵东, 等. 大埋深坚硬顶板厚煤层冲击地压微震监测及防治措施[J]. 中国矿业, 2021, 30(10): 77−83. doi: 10.12075/j.issn.1004-4051.2021.10.017

    CrossRef Google Scholar

    ZHANG K, FANG H, LI S D, et al. Microseismic monitoring and prevention of working face rock burst in thick coal seam with hard roof and large buried depth[J]. China Mining Magazine, 2021, 30(10): 77−83. doi: 10.12075/j.issn.1004-4051.2021.10.017

    CrossRef Google Scholar

    [14] 靳德武, 段建华, 李连崇, 等. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报, 2021, 29(4): 962−971.

    Google Scholar

    JIN D W, DUAN J H, LI L C, et al. Micro seismicity−based research for Ming induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology, 2021, 29(4): 962−971.

    Google Scholar

    [15] 侯恩科, 范继超, 谢晓深, 等. 基于微震监测的深埋煤层顶板导水裂隙带发育特征[J]. 煤田地质与探, 2020, 48(5): 89−96.

    Google Scholar

    HOU E K, FAN J C, XIE X S, et al. Development characteristics of water−conducting fractured zone in deep coal seam based on microseismic monitoring[J]. Coal Geology & Exploration, 2020, 48(5): 89−96.

    Google Scholar

    [16] 范继超. 文家坡矿4104综放工作面导水裂隙带发育特征研究[D]. 西安: 西安科技大学, 2020.

    Google Scholar

    FAN J C. Study on development characteristics of water flowing fracture zone in 4104 working face of Wenjiapo Coal Mine[D]. Xi’an: Xi’an University of Science and Technology, 2020.

    Google Scholar

    [17] 申鹏磊, 吕帅锋, 李贵山. 深部煤层气水平井水力压裂技术−以沁水盆地长治北地区为例[J]. 煤炭学报, 2021, 46(8): 2488−2500.

    Google Scholar

    SHEN P L, LV S F, LI G S. Hydraulic fracturing technology for deep coalbed methane horizontal wells: A case study in North Changzhi area of Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(8): 2488−2500.

    Google Scholar

    [18] 贾奇锋, 倪小明, 赵永超, 等. 不同煤体结构煤的水力压裂裂隙延伸规律[J]. 煤田地质与勘探, 2019, 47(2): 51−57.

    Google Scholar

    JIA Q F, NI X M, ZHAO Y C. Fracture extension law of hydraulic fracture in coal with different structure[J]. Coal Geology & Exploration, 2019, 47(2): 51−57.

    Google Scholar

    [19] 段建华, 汤红伟, 王云宏. 基于微震和瞬变电磁法的煤层气井水力压裂监测技术[J]. 煤炭科学技术, 2018, 46(6): 160−166.

    Google Scholar

    DUAN J H, TANG H W, WANG Y H. Detection technology of hydraulic fracturing in coalbed methane coal seam based on microseismic monitoring[J]. Coal Science and Technology, 2018, 46(6): 160−166.

    Google Scholar

    [20] 李超峰, 虎维岳, 王云宏, 等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探, 2018, 46(1): 101−107.

    Google Scholar

    LI C F, HU W Y, WANG Y H, et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration, 2018, 46(1): 101−107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(82) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint