Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

ZHANG Geyi, WANG Lujun, ZHANG Suo, ZHAO Ze, ZHANG Yong. Evolution Characteristics of Groundwater System in Deep Mining Areas in Western China Based on Feflow Software[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 29-37. doi: 10.13779/j.cnki.issn1001-0076.2025.02.003
Citation: ZHANG Geyi, WANG Lujun, ZHANG Suo, ZHAO Ze, ZHANG Yong. Evolution Characteristics of Groundwater System in Deep Mining Areas in Western China Based on Feflow Software[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 29-37. doi: 10.13779/j.cnki.issn1001-0076.2025.02.003

Evolution Characteristics of Groundwater System in Deep Mining Areas in Western China Based on Feflow Software

  • In the deep mining area of western China, there are abundant and high−quality Quaternary phreatic water and Cretaceous Luohe Formation aquifers, which serve as crucial recharge sources for the Chagannao Water Plant's drinking water supply and lake wetlands. This region exhibits high requirements for groundwater resource protection and sensitive water environments. This study aims to provide a reliable basis for future safe coal mining and comprehensive water resource utilization in the mining area. The research first determines the development height of water−conducting fracture zones after mining the 2−2 coal seam through similar simulation experiments. Subsequently, numerical simulation methods are employed to qualitatively describe the mutual influences and spatiotemporal evolution patterns among aquifers, while quantitatively analyzing the main controlling factors of aquifer recharge/discharge and mine water inflow. Key findings include: (1) The maximum height of water−conducting fractures reaches 148 m, not penetrating the Anding Formation aquiclude; (2) Mining activities cause significant water level decline in Zhiluo and Yan'an Formations, forming depression cones, while the Cretaceous Zhidan Group aquifer shows negligible water level changes; (3) The mine water inflow is calculated to be 17 032 m³/d. This study reveals the evolution patterns of overburden fracture fields and seepage fields during coal mining, and provides theoretical support for implementing "water−preserved coal mining" strategies in the area.

  • 加载中
  • [1] 曹志国, 何瑞敏, 王兴峰. 地下水受煤炭开采的影响及其储存利用技术[J]. 煤炭科学技术, 2014, 42(12): 113−116+128.

    Google Scholar

    CAO Z G, HE R M, WANG X F. Coal mining affected to underground water and underground water storage and utilization technology[J]. Coal Science and Technology, 2014, 42(12): 113−116+128.

    Google Scholar

    [2] 张凤娟, 杨子龙, 邢学睿, 等. 岩溶区地下水数值模拟分析及开采方案比选[J]. 中国矿业, 2024, 33(1): 200−204.

    Google Scholar

    ZHANG F J, YANG Z L, XING X R, et al. Numerical simulation analysis of groundwater in karst area and comparison of mining schemes[J]. China Mining Magazine, 2024, 33(1): 200−204.

    Google Scholar

    [3] 张成行, 郑洁铭, 徐智敏, 等. 基于水化学特征的顺和煤矿太灰水动力条件分析[J]. 煤炭工程, 2020, 52(6): 126−129.

    Google Scholar

    ZHANG C H, ZHENG J M, XU Z M, et al. Hydrodynamic conditions analysis of Taiyuan Formation limestone aquifer in Shunhe Coal Mine based on hydrochemical characteristics[J]. Coal Engineering, 2020, 52(6): 126−129.

    Google Scholar

    [4] 宫厚健, 刘守强, 李哲, 等. 基于Visual Modflow的矿井涌水量数值模拟预测研究[J]. 煤炭技术, 2018, 37(8): 155−157.

    Google Scholar

    GONG H J, LIU S Q, LI Z, et al. Prediction of numerical simulation for mine water inflow based on Visual Modflow[J]. Coal Technology, 2018, 37(8): 155−157.

    Google Scholar

    [5] 韩汝宁. 基于Dimine与Visual Modflow协同建模的矿区水文地质模型研究[J]. 中国矿业, 2018, 27(7): 139−143.

    Google Scholar

    HAN R N. Research of mine hydrogeological model baesd on collaborative modeling with Dimine and Visual Modflow[J]. China Mining Magazine, 2018, 27(7): 139−143.

    Google Scholar

    [6] 张保建. 基于Visual Modflow的台格庙勘查区矿井涌水量预测[J]. 煤炭科学技术, 2015, 43(S1): 146−149+172.

    Google Scholar

    ZHANG B J. Mine water inflow forecast based on Visual Modflow in Taigemiao Exploration Area[J]. Coal Science and Technology, 2015, 43(S1): 146−149+172.

    Google Scholar

    [7] 许珂. 台格庙矿区顶板涌(突)水危险性评价与矿井涌水量预测[D]. 北京: 中国矿业大学(北京), 2016.

    Google Scholar

    XU K. Roof aquifer water inrush risk evaluation and mine water inflow prediction in Taigemiao coal mine[D]. Beijing: China University of Mining & Technology (Beijing), 2016.

    Google Scholar

    [8] 黄天瑞, 李贵仁, 赵珍. 北洺河铁矿深部开采放水试验及数值模拟分析[J]. 中国矿业, 2015, 24(11): 107−112.

    Google Scholar

    HUANG T R, LI G R, ZHAO Z. The dewatering test for deep mining and numerical simulation analysis in Beiminghe iron mine[J]. China Mining Magazine, 2015, 24(11): 107−112.

    Google Scholar

    [9] 任晓波, 刘守强, 吴瑞芳. 基于子域解析元素法的煤矿疏降水量预测研究[J]. 煤炭工程, 2021, 53(7): 108−113.

    Google Scholar

    REN X B, LIU S Q, WU R F. Prediction of coal mine dewatering rate based on subdomains−analytic element method[J]. Coal Engineering, 2021, 53(7): 108−113.

    Google Scholar

    [10] 冯翔. 基于GMS三维地下水模型的矿井涌水量预测研究[D]. 北京: 中国地质大学(北京), 2017.

    Google Scholar

    FENG X. The mine water inflow prediction research based on three−dimensional groundwater model in GMS[D]. Beijing: China University of Geosciences (Beijing), 2017.

    Google Scholar

    [11] 王鸿, 姚云琦, 马建花, 等. 基于GMS的三维地质建模与地下水数值模拟−以永靖县黑台为例[J]. 兰州大学学报(自然科学版), 2023, 59(5): 601−609+619.

    Google Scholar

    WANG H, YAO Y Q, MA J H, et al. 3D geological modeling and groundwater numerical simulation research based on GMS: A case study of the Heitai terrace, Yongjing Country[J]. Journal of Lanzhou University (Natural Sciences), 2023, 59(5): 601−609+619.

    Google Scholar

    [12] SINGH M K , et al. Groundwater flow modeling for cachar, India using MODFLOW: a case study[J]. ISH Journal of Hydraulic Engineering, 2020(4): 1−11.

    Google Scholar

    [13] FERNANDEZ P, ALVAREZ ALVAREZ, et al. Groundwater numerical simulation in an open pit mine in a limestone formation using MODFLOW[J]. International Journal of Mine Water, 2016, 35: 145−155.

    Google Scholar

    [14] 董东林, 王存社, 陈书客, 等. 典型煤矿地下水运动及污染数值模拟[M]. 北京: 地质出版社, 2010.

    Google Scholar

    DONG D L, WANG C S, CHEN S K, et al. Numerical simulation of groundwater movement and pollution in typical coal mines[M]. Beijing: Geological Publishing House, 2010.

    Google Scholar

    [15] 靖晶. CO2储存过程多因素影响的数值模拟研究−以鄂尔多斯盆地石千峰组为例[D]. 武汉: 中国地质大学, 2021.

    Google Scholar

    JING J. Numerical simulation of multiple factors influence on CO2 storage process: A case study of shiqianfeng formation in ordos basin[D]. Wuhan: China University of Geosciences, 2021.

    Google Scholar

    [16] 李海祥, 曹志国, 王路军, 等. 台格庙矿区地下水水化学特征与演变规律研究[J]. 煤炭科学技术, 2023, 51(9): 284−291.

    Google Scholar

    LI H X, CAO Z G, WANG L J, et al. Study on the chemical characteristics and evolution law of groundwater in Taigemiao mining area[J]. Coal Science and Technology, 2023, 51(9): 284−291.

    Google Scholar

    [17] 杨建. 蒙陕接壤区深埋型煤层顶板水文地质及水文地球化学特征[J]. 煤矿安全, 2016, 47(10): 176−179+183.

    Google Scholar

    YANG J. Hydrogeological and hydrogeochemical characteristics of deep buried coal seam roof in Shaanxi and Inner Mongolia Contiguous Area[J]. Safety in Coal Mines, 2016, 47(10): 176−179+183.

    Google Scholar

    [18] 李海祥, 曹志国, 吴宝杨, 等. 煤矿覆岩裂隙地下水渗流特征的试验研究[J]. 煤炭科学技术, 2023, 51(6): 168−176.

    Google Scholar

    LI H X, CAO Z G, WU B Y, et al. Experimental study on characteristics of grounawater fracture in coalmine overlying rock[J]. Coal Science and Technology, 2023, 51(6): 168−176.

    Google Scholar

    [19] 吴宝杨, 李全生, 曹志国, 等. 煤矿地下水库高盐矿井水封存对地下水的影响[J]. 煤炭学报, 2021, 46(7): 2360−2369.

    Google Scholar

    WU B Y, LI Q S, CAO Z G, et al. Influence of high salt mine water storaged in underground reservoir of coal mine on groundwater[J]. Journal of China Coal Society, 2021, 46(7): 2360−2369.

    Google Scholar

    [20] 薛禹群. 地下水动力学[M]. 北京: 地质出版社, 1997.

    Google Scholar

    XUE Y Q. Groundwater dynamics[M]. Beijing: Geological Publishing House, 1997.

    Google Scholar

    [21] 吕情绪, 狄军贞, 李果, 等. 高强度采矿活动对地下水影响的数值模拟研究[J]. 煤炭科学技术, 2023, 51(5): 193−199.

    Google Scholar

    LU Q X, DI J Z, LI G, et al. Numerical simulation study on the impact of high intensity mining activities on groundwater[J]. Coal Science and Technology, 2023, 51(5): 193−199.

    Google Scholar

    [22] 崔春兰. 鄂尔多斯新街矿区台格庙3矿井涌水量预测[J]. 煤炭技术, 2015, 34(1): 140−143.

    Google Scholar

    CUI C L. Forecasting water inflow of Taigemiao No. 3 Mine of Xinjie Coal Mine in Erdos[J]. Coal Technology, 2015, 34(1): 140−143.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(182) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint