Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

HU Huarui, LIU Shiwei, WANG Wende, WANG Haoming, ZHANG Yangkai. Analysis of Mechanical Behavior and Damage Characteristics of Fractured Sandstone under Triaxial Stress Load[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 14-21. doi: 10.13779/j.cnki.issn1001-0076.2025.02.002
Citation: HU Huarui, LIU Shiwei, WANG Wende, WANG Haoming, ZHANG Yangkai. Analysis of Mechanical Behavior and Damage Characteristics of Fractured Sandstone under Triaxial Stress Load[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 14-21. doi: 10.13779/j.cnki.issn1001-0076.2025.02.002

Analysis of Mechanical Behavior and Damage Characteristics of Fractured Sandstone under Triaxial Stress Load

  • The damage and failure characteristics of deep rock are significantly different from those of shallow rock. Investigating the mechanical behavior of fractured sandstone under complex stress environments is crucial for ensuring the safe implementation of deep underground engineering projects. Taking sandstone samples with cracks of different angles as research objects, triaxial compressive mechanical experiments were carried out. The evolution law of the mechanical properties of the fractured sandstone foundation was analyzed, and the influence law of the crack on the mechanical properties of the sample was explored by means of the energy dissipation theory. The results show that the crack angle has little effect on the deformation and failure law of the sample, and the axial stress−strain evolution law of sandstone with different crack angles shows an inverted "V" shape, first increasing and then decreasing. The radial stress−strain curve increases at first and then decreases slowly. The post−peak stage shows a similar yield platform, with the maximum axial and radial strain being 0.86% and 0.32%, and the minimum strain being 0.37% and 0.19%, respectively. The axial deformation degree of the specimen is larger than that of the radial deformation, and the axial deformation degree increases with the increase of the crack angle. Both peak strength and elastic modulus exhibited linear growth with the increase of crack angle, the peak strength and elastic modulus of the sample increase linearly, but the increase amplitude decreases first and then increases. As the angle increases from 0° to 30°, 45°, 60° and 90°, the strength of adjacent samples increased successively in the latter compared with the former by 8.58%, 3.16%, 1.34% and 15.12%, and the elastic modulus increases by 5.46%, 0.07%, 3.13% and 3.74%. The changes of total energy, elastic energy and dissipative energy of different samples are basically the same. Energy analysis revealed consistent trends across specimens: total energy and elastic energy accumulated faster than dissipative energy, with rapid dissipation energy growth preceding failure. Defined energy parameters showed that the energy storage coefficient progressively increased (0.615, 0.618, 0.642, 0.662, 0.712) while the energy dissipation coefficient decreased (0.159, 0.153, 0.142, 0.139, 0.127) with the angle increases from 0°, 30°, 45°, 60°, and 90°. This inverse relationship demonstrates that specimens with higher strength possess greater energy storage capacity, reduced energy dissipation, and enhanced deformation resistance.

  • 加载中
  • [1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283−1305.

    Google Scholar

    XIE H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283−1305.

    Google Scholar

    [2] 夏开文, 姚伟, 付岩, 等. 深部岩石动力学SHPB实验研究进展[J]. 工程爆破, 2024, 30(5): 29−44.

    Google Scholar

    XIA K W, YAO W, FU Y, et al. Advances on dynamic behaviors of deep rocks using SHPB[J]. Engineering Blasting, 2024, 30(5): 29−44.

    Google Scholar

    [3] 何满潮, 武毅艺, 高玉兵, 等. 深部采矿岩石力学进展[J]. 煤炭学报, 2024, 49(1): 75−99.

    Google Scholar

    HE M C, WU Y Y, GAO Y B, et al. Research progress of rock mechanics in deep mining[J]. Journal of China Coal Society, 2024, 49(1): 75−99.

    Google Scholar

    [4] 李占金, 刘紫琼, 李群, 等. 高应力条件下深部巷道受循环扰动诱发岩爆特征试验研究[J]. 矿业研究与开发, 2025, 45(1): 1−8.

    Google Scholar

    LI Z J, LIU Z Q, LI Q, et al. Experimental study on rock burst characteristics induced by cyclic disturbance in deep tunnels under high−stress conditions[J]. Minging Research and Development, 2025, 45(1): 1−8.

    Google Scholar

    [5] 卢宏建, 梁鹏, 顾乃满, 等. 多次开挖扰动下采空区围岩应力演化数值模拟[J]. 矿产保护与利用, 2016(6): 17−20.

    Google Scholar

    LU H J, LIANG P, GU N M, et al. Stress evolution numerical simulation of goaf surrounding rock under repetitious excavation disturbance[J]. Conservation and Utilization of Mineral Resources, 2016(6): 17−20.

    Google Scholar

    [6] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161−2178.

    Google Scholar

    XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161−2178.

    Google Scholar

    [7] 张良, 王来贵, REN T, 等. 强扰煤岩体蠕变过程中跨尺度非连续结构演化研究进展[J]. 煤田地质与勘探, 2024, 52(10): 47−59.

    Google Scholar

    ZHANG L, WANG L G, REN T, et al. Advances in research on the evolution of trans−scale discontinuous structures during the creeps of strongly disturbed coals[J]. Coal Geology & Exploration, 2024, 52(10): 47−59.

    Google Scholar

    [8] 刘造保, 王川, 周宏源, 等. 岩石高温高压两刚一柔型真三轴时效力学试验系统研制与应用[J]. 岩石力学与工程学报, 2021, 40(12): 2477−2486.

    Google Scholar

    LIU Z B, WANG C, ZHOU H Y, et al. A true triaxial time−dependent test system with two rigid and one flexible loading frame for rock under real−time high temperature and high pressure and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2477−2486.

    Google Scholar

    [9] 谢和平, 高明忠, 付成行, 等. 深部不同深度岩石脆延转化力学行为研究[J]. 煤炭学报, 2021, 46(3): 701−715.

    Google Scholar

    XIE H P, GAO M Z, FU C H, et al. Mechanical behavior of brittle−ductile transition in rocks at different depths[J]. Journal of China Coal Society, 2021, 46(3): 701−715.

    Google Scholar

    [10] 谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959−3978.

    Google Scholar

    XIE H P, ZHANG R, ZHANG Z T, et al. Reflections and explorations on deep earth science and deep earth engineering technology[J]. Journal of China Coal Society, 2023, 48(11): 3959−3978.

    Google Scholar

    [11] 张茹, 张安林, 谢和平, 等. 不同赋存深度岩石力学行为差异及本构模型研究[J]. 中国科学基金, 2022, 36(6): 1008−1015.

    Google Scholar

    ZHANG R, ZHANG A L, XIE H P, et al. Mechanical behavior differences and constitutive model of rock at different depths[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 1008−1015.

    Google Scholar

    [12] 郑可跃, 施成华, 娄义黎, 等. 深部高地应力隧道开挖卸荷围岩能量计算方法及演化机制[J]. 岩土力学, 2025, 46(1): 165−177.

    Google Scholar

    ZHENG K Y, SHI C H, LOU Y L, et al. Calculation method and evolution mechanism of surrounding rock energy during excavation unloading of deep tunnels in high in−situ stress field[J]. Rock and Soil Mechanics, 2025, 46(1): 165−177.

    Google Scholar

    [13] 云丽, 张志龙, 刘洋, 等. 深部高应力下花岗岩力学损伤的孔隙水压影响[J]. 实验室研究与探索, 2025, 44(1): 158−163.

    Google Scholar

    YUN L, ZHANG Z L, LIU Y, et al. Effect of pore water pressure on mechanical damage of granite under deep high stress[J]. Research and Exploration in Laboratory, 2025, 44(1): 158−163.

    Google Scholar

    [14] 陶明, 吴星宇, 赵瑞, 等. 岩体应力梯度力学特性研究进展与展望[J]. 中南大学学报(自然科学版), 2024, 55(12): 4473−4492.

    Google Scholar

    TAO M, WU X Y, ZHAO R, et al. Advancements and future prospects of mechanical characteristics of rock stress gradients[J]. Journal of Central South University (Science and Technology), 2024, 55(12): 4473−4492.

    Google Scholar

    [15] 罗勇, 宫凤强. 深部硬岩巷道围岩板裂破坏试验研究进展与展望[J]. 煤炭科学技术, 2022, 50(6): 46−60.

    Google Scholar

    LUO Y, GONG F Q. Research progress and prospect of laboratory test of rock spalling in deep hard rock roadway[J]. Coal Science and Technology, 2022, 50(6): 46−60.

    Google Scholar

    [16] 张广超, 周泽森, 周广磊, 等. 基于亚临界裂纹扩展的岩石蠕变-冲击变形破裂特征研究[J/OL]. 煤炭学报, 1-16[2025-01-26]. https://doi.org/10.13225/j.cnki.jccs.2024.1357.

    Google Scholar

    ZHANG G C, ZHOU Z S, ZHOU G L, et. al. Deformation and fracture characteristics of rock under creep−impact loading based on subcritical crack growth [J/OL]. Journal of China Coal Society, 1-16[2025-01-26]. https://doi.org/10.13225/j.cnki.jccs.2024.1357.

    Google Scholar

    [17] 邵陆航, 康志强, 辛东夫, 等. 深部片麻岩破坏全过程声发射时频域信号特征及前兆预警研究[J]. 河南理工大学学报(自然科学版), 2021, 40(2): 15−21.

    Google Scholar

    SHAO L H, KANG Z Q, XIN D F, et al. Study on the time frequency domain signal characteristics and precursor early warning of acoustic emission in deep gneiss failure[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(2): 15−21.

    Google Scholar

    [18] 王苏生, 杨圣奇, 田文岭, 等. 预制裂隙岩石裂纹扩展相场模拟方法研究[J]. 岩石力学与工程学报, 2023, 42(2): 365−377.

    Google Scholar

    WANG S S, YANG S Q, TIAN W L, et al. Research on phase−field simulation method of crack propagation of rock with pre−existing fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 365−377.

    Google Scholar

    [19] YU X J, YANG Y P, LI X F, et al. Cracking formation and evolution in surrounding rock of a deep fractured rock mass roadway: A study of the 790 m level segment engineering at the Jinchuan Mine, China[J]. Engineering Geology, 2024, 331: 107431.

    Google Scholar

    [20] GUO Y J, XIONG Z M, LI Z H, et al. Damage behavior study of specimens with double−prefabricated cracks under dynamic−static coupling loads[J]. Buildings, 2023, 13(11): 2793. doi: 10.3390/buildings13112793

    CrossRef Google Scholar

    [21] HU H R, XIA B W, LUO Y F, et al. Effect of crack angle and length on mechanical and ultrasonic properties for the single cracked sandstone under triaxial stress loading−unloading[J]. Frontiers in Earth Science, 2022, 10: 900238. doi: 10.3389/feart.2022.900238

    CrossRef Google Scholar

    [22] HU H R, LU Y Y, XIA B W, et al. Damage characteristics of sandstone with different crack angles subjected to true triaxial cyclic loading and unloading[J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103444. doi: 10.1016/j.tafmec.2022.103444

    CrossRef Google Scholar

    [23] 李艳, 杨宇冰, 梁文彪, 等. 围压对花岗岩强度特性与脆性的影响及其表征[J]. 地下空间与工程学报, 2024, 20(5): 1528−1540.

    Google Scholar

    LI Y, YANG Y B, LIANG W B, et al. Influence of confining pressure on strength characteristics and brittleness of granite and its characterization[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(5): 1528−1540.

    Google Scholar

    [24] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005(16): 2803−2813.

    Google Scholar

    HE M C, XIE H P, PENG S P, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(16): 2803−2813.

    Google Scholar

    [25] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846−866.

    Google Scholar

    LI X B, GONG F Q. Research progress and prospect of deep mining rock mechanics based on coupled static−dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846−866.

    Google Scholar

    [26] 韩震宇, 李地元, 朱泉企, 等. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性[J]. 工程科学学报, 2020, 42(12): 1588−1596.

    Google Scholar

    HAN Z Y, LI D Y, ZHU Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface[J]. Chinese Journal of Engineering, 2020, 42(12): 1588−1596.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(112) PDF downloads(103) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint