Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

GUO Fei, WU Shaokang, TANG Dongxu, JIAN Fengba, YANG Ruxin. Review on Deformation Mechanism and Control Technology of Small Coal Pillar Working Face Roadway[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 53-63. doi: 10.13779/j.cnki.issn1001-0076.2025.08.002
Citation: GUO Fei, WU Shaokang, TANG Dongxu, JIAN Fengba, YANG Ruxin. Review on Deformation Mechanism and Control Technology of Small Coal Pillar Working Face Roadway[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 53-63. doi: 10.13779/j.cnki.issn1001-0076.2025.08.002

Review on Deformation Mechanism and Control Technology of Small Coal Pillar Working Face Roadway

More Information
  • With the increasing mining depth and intensity of coal resources, the stability problem of small coal pillar working faces has become increasingly prominent. This paper comprehensively analyzes the deformation mechanism of small coal pillar working faces and the corresponding treatment technologies. Regarding the deformation mechanism, the influences of mining stress, surrounding rock properties, and coal pillar size on roadway deformation are discussed in detail. The redistribution of stress due to mining results in stress concentration of the surrounding rock, and the weakness of the surrounding rock and the unreasonable coal pillar size further exacerbate the roadway deformation. As for the treatment technologies, the methods of strengthening support, optimizing coal pillar design, and grouting reinforcement are introduced. To enhance the load−bearing capacity of the roadway, combined support methods like anchor rods and anchor cables are mainly adopted for strengthening support. Through theoretical analysis and numerical simulation, the optimal coal pillar design can determine the reasonable coal pillar size and layout scheme. Grouting reinforcement can improve the physical and mechanical properties of the surrounding rock and boost its stability. Meanwhile, the study also indicates that in practical applications, a variety of treatment technologies should be comprehensively utilized according to specific geological and mining conditions to achieve the best treatment effect. However, there are still some deficiencies in the current research. For example, the prediction accuracy of roadway deformation in small coal pillar working faces under complex geological conditions needs to be enhanced, and the cost−benefit analysis of treatment technologies is not flawless. Future research requires further in−depth exploration to better ensure the safe production and efficient mining of coal mines.

  • 加载中
  • [1] ZHANG J, YANG W, LIN B, et al. Strata movement and stress evolution when mining two overlapping panels affected by hard stratum[J]. International Journal of Mining Science and Technology, 2019, 29(5): 691−699. doi: 10.1016/j.ijmst.2019.07.001

    CrossRef Google Scholar

    [2] 吴少康, 张俊文, 徐佑林, 等. 煤层群采动下围岩应力演化规律及协同控制技术研究[J]. 煤炭科学技术, 2024, 52(3): 24−37. doi: 10.12438/cst.2023-0515

    CrossRef Google Scholar

    WU S K, ZHANG J W, XU Y L, et al. Study on the stress evolution law of surrounding rock and cooperative control technology in coal seam group mining[J]. Coal Science and Technology, 2024, 52(3): 24−37. doi: 10.12438/cst.2023-0515

    CrossRef Google Scholar

    [3] 康红普, 徐刚, 王彪谋, 等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报, 2019, 1(2): 7−39.

    Google Scholar

    KANG H P, XU G, WANG B M, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 7−39.

    Google Scholar

    [4] 吴开智. 特厚煤层综放面小煤柱沿空巷道大变形破坏力学机理及控制策略研究[D]. 徐州:中国矿业大学, 2023.

    Google Scholar

    WU K Z. Mechanism and control of deformation and failure of roadway along gob in mechanized caving face of extra thick coal seam [D]. Xuzhou: China University of Mining and Technology, 2023.

    Google Scholar

    [5] 唐建新, 李霜, 侯阳阳, 等. 急倾斜三软厚煤层留小煤柱沿空护巷技术[J]. 地下空间与工程学报, 2022, 18(4): 1392−1400.

    Google Scholar

    TANG J X, LI S, HOU Y Y, et al. Gob side entry protection technology of small coal pillar in steeply inclined three−soft thick coal seam[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(4): 1392−1400.

    Google Scholar

    [6] 李硕森, 徐青云, 赵晓渝, 等. 小煤柱留设方法探讨及发展趋势分析[J]. 采矿技术, 2024, 24(2): 1−6. doi: 10.3969/j.issn.1671-2900.2024.02.001

    CrossRef Google Scholar

    LI S S, XU Q Y, ZHAO X Y, et al. Discussion on small coal pillar retention method and development trend analysis[J]. Mining Technology, 2024, 24(2): 1−6. doi: 10.3969/j.issn.1671-2900.2024.02.001

    CrossRef Google Scholar

    [7] 王小平, 王文杰, 黄永祥, 等. 金川三矿破碎围岩巷道变形控制方式优选研究[J]. 矿业研究与开发, 2024, 44(10): 65−72.

    Google Scholar

    WANG X P, WANG W J, HUANG Y X, et al. Research on optimal selection of deformation control methods for roadway with fractured surrounding rocks in Jinchuan No. 3 mine[J]. Mining Research and Development, 2024, 44(10): 65−72.

    Google Scholar

    [8] 康志鹏, 罗勇, 任波, 等. 复合顶板倾斜薄煤层小煤柱稳定机理与控制研究[J]. 矿业研究与开发, 2024, 44(9): 40−47.

    Google Scholar

    KANG Z P, LUO Y, REN B, et al. Composite inclined thin coal seam roof of small coal pillar stability mechanism and control research[J]. Mining Research and Development, 2024, 44(9): 40−47.

    Google Scholar

    [9] 吴拥政, 付玉凯, 何思锋, 等. 强冲击载荷下巷道围岩变形破坏特征及控制技术[J]. 煤炭科学技术, 2024, 52(9): 76−87. doi: 10.12438/cst.2024-0776

    CrossRef Google Scholar

    WU Y Z, FU Y K, HE S F, et al. Characteristics of deformation and failure of surrounding rock in roadway under strong impact load and control technology[J]. Coal Science and Technology, 2024, 52(9): 76−87. doi: 10.12438/cst.2024-0776

    CrossRef Google Scholar

    [10] 朱威霖, 杨科, 池小楼. 基于光纤光栅传感技术的深部巷道围岩状态精准表征[J]. 中国矿业, 2024, 33(10): 177−184.

    Google Scholar

    ZHU W L, YANG K, CHI X L. Accurate characterization of surrounding rock state of deep roadway based on fiber grating sensing technology[J]. China Mining Magazine, 2024, 33(10): 177−184.

    Google Scholar

    [11] 赵杰, 张宁波, 刘海兵. 关家崖煤矿重复采动巷道变形特征及控制对策研究[J]. 工矿自动化, 2024, 50(8): 44−51.

    Google Scholar

    ZHAO J, ZHANG N B, LIU H B. Guan home cliff repeating mining coal mine roadway deformation characteristics and the control countermeasures study[J]. Journal of Mine Automation, 2024, 50(8): 44−51.

    Google Scholar

    [12] 王桂峰, 张崟峰, 王忠宾, 等. 煤体应力随钻监测响应特征及智能感知技术研究[J]. 采矿与安全工程学报, 2024, 9(5): 1069−1077.

    Google Scholar

    WANG G F, ZHANG Y F, WANG Z B, et al. Research on drilling characteristics and the intelligent perception technology of coal stress[J]. Journal of Mining and Safety Engineering, 2024, 9(5): 1069−1077.

    Google Scholar

    [13] 刘光旭, 周法政, 赵慧杰, 等. 鲍店煤矿小煤柱巷道超前支护应力监测分析与支护优化研究[J]. 煤矿现代化, 2024, 33(2): 112−120. doi: 10.3969/j.issn.1009-0797.2024.02.026

    CrossRef Google Scholar

    LIU G X, ZHOU F Z, ZHAO H J, et al. Stress monitoring analysis and support optimization research on advanced support of small coal pillar tunnels in Baodian Coal Mine[J]. Coal Mine Modernization, 2024, 33(2): 112−120. doi: 10.3969/j.issn.1009-0797.2024.02.026

    CrossRef Google Scholar

    [14] 裴陆慧. 永红煤矿小煤柱沿空掘巷围岩控制技术应用研究[J]. 山东煤炭科技, 2024, 42(2): 20−24. doi: 10.3969/j.issn.1005-2801.2024.02.005

    CrossRef Google Scholar

    PEI L H. Research and application of surrounding rock control technology for small coal pillar roadway excavation along goaf in Yonghong coal mine[J]. Shandong Coal Science and Technology, 2024, 42(2): 20−24. doi: 10.3969/j.issn.1005-2801.2024.02.005

    CrossRef Google Scholar

    [15] 钟鑫淼. 朱集东煤矿小煤柱沿空掘巷围岩稳定性控制技术研究[D]. 淮南: 安徽理工大学, 2024.

    Google Scholar

    ZHONG X M. Research on stability control technology of surrounding rock in goaf excavation of small coal pillar in Zhujidong Coal Mine [D]. Huainan: Anhui University of Science and Technology, 2024

    Google Scholar

    [16] 钱鸣高. 采场围岩控制理论与实践[J]. 矿山压力与顶板管理, 1999(Z1): 12−15.

    Google Scholar

    QIAN M G. Theory and practice of surrounding rock control in stope[J]. Mine Pressure and Roof Management, 1999(Z1): 12−15.

    Google Scholar

    [17] KANG H, GAO F, XU G, et al. Mechanical behaviors of coal measures and ground control technologies for China's deep coal mines−A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 37−65.

    Google Scholar

    [18] 吴少康. 高应力软岩巷道应力分布及控制机理研究[D]. 贵阳:贵州大学, 2022.

    Google Scholar

    WU S K. Study on Stress distribution and control mechanism of high stress soft rock roadway [D]. Guiyang: Guizhou University, 2022.

    Google Scholar

    [19] 程利兴, 姜鹏飞, 杨建威, 等. 深井孤岛工作面巷道围岩采动应力分区演化特征[J]. 岩土力学, 2020, 41(12): 4078−4086.

    Google Scholar

    CHENG L X, JIANG P F, YANG J W, et al. Evolution characteristics of mining stress zone in roadway surrounding rock of isolated mining face in deep well [J]. Rock and Soil Mechanics, 2019, 41(12): 4078−4086.

    Google Scholar

    [20] 康红普, 司林坡, 苏波. 煤岩体钻孔结构观测方法及应用[J]. 煤炭学报, 2010, 35(12): 1949−1956.

    Google Scholar

    KANG H P, SI L P, SU B. Borehole observation methods in coal and rock mass and their applications[J]. Journal of China Coal Society, 2010, 35(12): 1949−1956.

    Google Scholar

    [21] 郝晓琦, 韩刚, 解嘉豪, 等. 鄂尔多斯矿区小煤柱沿空掘巷冲击地压机理[J]. 采矿与岩层控制程学报, 2023, 5(2): 36−45.

    Google Scholar

    HAO X Q, HAN G, XIE J H, et al. Rock burst mechanism of roadway excavation along goaf with small coal pillar in Ordos mining area[J]. Journal of Mining and Strata Control Engineering, 2023, 5(2): 36−45.

    Google Scholar

    [22] 宋振骐, 蒋金泉. 煤矿岩层控制的研究重点与方向[J]. 岩石力学与工程学报, 1996(2): 33−39. doi: 10.3321/j.issn:1000-6915.1996.02.006

    CrossRef Google Scholar

    SONG Z Q, JIANG J Q. The current research situation and developing orientation of strata control in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 1996(2): 33−39. doi: 10.3321/j.issn:1000-6915.1996.02.006

    CrossRef Google Scholar

    [23] 张百胜, 王朋飞, 崔守清, 等. 大采高小煤柱沿空掘巷切顶卸压围岩控制技术[J]. 煤炭学报, 2021, 46(7): 2254−2267.

    Google Scholar

    ZHANG B S, WANG P F, CUI S Q, et al. Mechanism and surrounding rock control of roadway driving along gob in shallow−buried, large mining height and small coal pillars by roof cutting[J]. Journal of China Coal Society, 2021, 46(7): 2254−2267.

    Google Scholar

    [24] 郑西贵, 姚志刚, 张农. 掘采全过程沿空掘巷小煤柱应力分布研究[J]. 采矿与安全工程学报, 2012, 29(4): 459−465.

    Google Scholar

    ZHENG X G, YAO Z G, ZHANG N. Stress distribution of coal pillar with gob−side entry driving in the process of excavation & mining[J]. Journal of Mining and Safety Engineering, 2012, 29(4): 459−465.

    Google Scholar

    [25] 彭林军, 张东峰, 郭志飚, 等. 特厚煤层小煤柱沿空掘巷数值分析及应用[J]. 岩土力学, 2013, 34(12): 3609−3616+3632.

    Google Scholar

    PENG L J, ZHANG D F, GUO Z B, et al. Numerical analysis and application of goaf excavation of small pillar in extra thick coal seam[J]. Rock and Soil Mechanics, 2013, 34(12): 3609−3616+3632.

    Google Scholar

    [26] ZANG C, JIANG B, WANG X, et al. Study on damage law and width optimization design of coal pillar with the discrete element method[J]. Geomechanics and Engineering, 2024, 37(6): 555−563.

    Google Scholar

    [27] 毕慧杰, 莫云龙. 顺序开采工作面小煤柱巷道布置方法研究[J]. 煤矿安全, 2024, 55(7): 145−153.

    Google Scholar

    BI H J, MO Y L. Research on layout method of small coal pillar roadways in sequential mining faces[J]. Safety in Coal Mines, 2024, 55(7): 145−153.

    Google Scholar

    [28] 周礼杰, 陈亮, 程志恒, 等. 突出厚煤层沿空掘巷煤柱留设宽度优化研究[J]. 煤炭科学技术, 2022, 50(3): 92−101.

    Google Scholar

    ZHOU L J, CHEN L, CHENG Z H, et al. Study on optimization of coal pillar width of gob−side entry driving in thick coal seam with gas outburst[J]. Coal Science and Technology, 2022, 50(3): 92−101.

    Google Scholar

    [29] 牛明, 李庆国, 刘佳乐, 等. 转龙湾矿浅埋薄基岩厚煤层双巷掘进巷间煤柱合理尺寸研究[J]. 煤炭技术, 2024, 43(9): 25−28.

    Google Scholar

    NIU M, LI Q G, LIU J L, et al. Research on reasonable width of coal pillars between roadways for double−roadway tunneling in thick coal seams with shallow buried thin bedrock in Zhuanlongwan Coal Mine[J]. Coal Technology, 2018, 43(9): 25−28.

    Google Scholar

    [30] 蔡音飞, 刘健松, 冀哲, 等. 以煤层倾向为参考方向的锐角优化垂线法煤柱设计方法[J]. 矿业安全与环保, 2024, 51(4): 127−132+138.

    Google Scholar

    CAI Y F, LIU J S, JI Z, et al. Acute−angle optimized perpendicular line method for protective coal pillar design with a reference orientation of seam dip direction[J]. Mining Safety and Environmental Protection, 2019, 51(4): 127−132+138.

    Google Scholar

    [31] ZHANG D, ZHAO H, LI G. Study on size optimization of a protective coal pillar under a double−key stratum structure[J]. Applied Sciences−Basel, 2022, 12(22), 11868.

    Google Scholar

    [32] 杨森. 复杂条件下煤巷快速掘进迎头顶板变形机理及动态分次控制技术[D]. 淮南:安徽理工大学, 2024.

    Google Scholar

    YANG S. Deformation mechanism and dynamic grading of heading roof in rapid excavation of coal roadways under complex conditions control technology [D]. Huainan: Anhui University of Science and Technology, 2024.

    Google Scholar

    [33] CHEN J, ZHANG W, MA J, et al. An analytical approach to study the reinforcement performance of rock anchors[J]. Engineering Failure Analysis. 2024, 160(1): 1−20.

    Google Scholar

    [34] 赵旭伟. 节理化岩体高铁隧道失稳机制与主动控制[D]. 成都:西南交通大学, 2023.

    Google Scholar

    ZHAO X W. Instability mechanism and active control of high-speed railway tunnel in jointed rock mass [D]. Chengdu: Southwest Jiaotong University, 2023.

    Google Scholar

    [35] 黄万朋, 赵同阳, 江东海, 等. 双巷掘进留窄小煤柱布置方式及围岩稳定性控制技术[J]. 岩石力学与工程学报, 2023, 42(3): 617−629.

    Google Scholar

    HUANG W P, ZHAO T Y, JIANG D H, et al. Arrangement of double entry driving with a narrow coal pillar in the middle and stability control technology of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 617−629.

    Google Scholar

    [36] 康红普, 王金华, 林健. 煤矿巷道锚杆支护应用实例分析[J]. 岩石力学与工程学报, 2010, 29(4): 649−664.

    Google Scholar

    KANG H P, WANG J H, LIN J. Case studies of rock bolting in coal mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 649−664.

    Google Scholar

    [37] 苏超, 康红普, 姜鹏飞, 等. 基于连续实测的煤巷围岩掘–采期间采动应力演化与破坏模式分析[J]. 岩石力学与工程学报, 2024, 43(9): 2201−2213.

    Google Scholar

    SU C, KANG H P, JIANG P F, et al. Analysis on mining−induced stress evolution and surrounding rock failure mode of roadway during heading−mining period based on continuous measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 43(9): 2201−2213.

    Google Scholar

    [38] 崔峰, 冯港归, 贾冲, 等. 冲击地压矿井近距离特厚煤层综放工作面合理推进速度研究[J]. 煤炭科学技术, 2023, 51(7): 287−297.

    Google Scholar

    CUI F, FENG G G, JIA C, et al. Study on reasonable advancing speed of fully−mechanized top−coal caving face in mining contugous extra−thick coal seams in rockburst mine [J]. Coal Science and Technology, 2019, 51(7): 287−297.

    Google Scholar

    [39] 李化敏, 王文强, 王祖洸, 等. 特厚煤层沿空掘巷围岩支卸协同控制技术[J]. 煤炭工程, 2024, 56(2): 45−51.

    Google Scholar

    LI H M, WANG W Q, WANG Z G, et al. Surrounding rock control technology with synergetic support and pressure relief for gob−side entry driving in extra−thick coal seam[J]. Coal Engineering, 2024, 56(2): 45−51.

    Google Scholar

    [40] 黄鹏程. 抗剪锚管索力学性能及其支护机理研究[D]. 北京: 中国矿业大学(北京), 2022.

    Google Scholar

    HUANG P C. Study on mechanical properties and supporting mechanism of anchor cable with c-shaped tub [D]. Beijing: China University of Mining and Technology (Beijing), 2022.

    Google Scholar

    [41] 方运买, 李进宝. 锚索支护密度影响下煤矿巷道稳定性分析[J]. 煤炭技术, 2024, 43(5): 18−23.

    Google Scholar

    FANG Y M, LI J B. Anchor rope supporting density under the influence of coal mine roadway stability analysis[J]. Coal Technology, 2024, 43(5): 18−23.

    Google Scholar

    [42] 殷小亮, 张艳博, 钟科, 等. 浅埋大跨度隧道预应力锚杆锚固参数及支护设计研究[J]. 金属矿山, 2023(2): 58−66.

    Google Scholar

    YIN X L, ZHANG Y B, ZHONG K, et al. Research on anchorage parameters and support design of prestressed anchors in shallow buried large span tunnels[J]. Metal Mine, 2023(2): 58−66.

    Google Scholar

    [43] 崔国宏, 吴宇, 尹嘉帝, 等. 相邻工作面采动影响下小煤柱巷道围岩应力时空演化特征研究[J]. 煤炭技术, 2023, 42(7): 76−81.

    Google Scholar

    CUI G H, WU Y, YIN J D, et al. Spatial and temporal evolution characteristics of surrounding rock stress in small coal pillar roadway under influence of adjacent working face mining[J]. Coal Technology, 2019, 42(7): 76−81.

    Google Scholar

    [44] WU S, ZHANG J, SONG Z, et al. Review of the development status of rock burst disaster prevention system in China[J]. Journal of Central South University, 2023, 30(11): 3763−3789. doi: 10.1007/s11771-023-5478-2

    CrossRef Google Scholar

    [45] 杨依卓, 张百胜, 郭俊庆, 等. 综放工作面小煤柱动压巷道切顶卸压−锚注加固协同控制技术研究[J]. 煤炭技术, 2023, 42(3): 27−32.

    Google Scholar

    YANG Y Z, ZHANG B S, GUO J Q, et al. Research on collaborative control technology of cutting top pressure relief and anchor reinforcement of small coal pillar roadway on comprehensive discharge face[J]. Coal Technology, 2019, 42(3): 27−32.

    Google Scholar

    [46] 胡少银, 刘泉声, 李世辉, 等. 裂隙岩体注浆理论研究进展及展望[J]. 煤炭科学技术, 2022, 50(1): 112−126. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201010

    CrossRef Google Scholar

    HU S Y, LIU Q S, LI S H, et al. Advance and review on grouting critical problems in fractured rock mass[J]. Coal Science and Technology, 2022, 50(1): 112−126. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201010

    CrossRef Google Scholar

    [47] 葛帅帅, 孙亮, 贺丽峰, 等. 综采坚硬顶板分段水力压裂卸压护巷技术研究[J]. 矿业研究与开发, 2024, 44(7): 165−173.

    Google Scholar

    GE S S, SUN L, HE L F, et al. Investigation on the pressure relief and roadway support by segmented hydraulic fracturing technique in hard roof of fully mechanized mining[J]. Mining Research and Development, 2024, 44(7): 165−173.

    Google Scholar

    [48] 石垚. 锚杆不同护表构件支护应力场分布规律试验研究[J]. 煤炭工程, 2023, 55(12): 134−140.

    Google Scholar

    SHI Y. Experimental study on stress distribution law of different bolt surface protection components[J]. Coal Engineering, 2019, 55(12): 134−140.

    Google Scholar

    [49] 原贵阳, 高富强, 王涛, 等. 锚网−围岩接触面注浆充填预应力施加技术[J]. 煤炭学报, 2024, 49(5): 2222−2230.

    Google Scholar

    YUAN G Y, GAO F Q, WANG T, et al. Prestress application technology of grouting filling at the contact surface of anchor net and surrounding rock[J]. Journal of China Coal Society, 2024, 49(5): 2222−2230.

    Google Scholar

    [50] 于健浩, 刘鹏亮, 崔锋. 高应力煤体小煤柱护巷围岩稳定性控制技术研究[J]. 煤炭工程, 2023, 55(12): 71−77.

    Google Scholar

    YU J H, LIU P L, CUI F. Research on stability control technology of high stress coal body and small coal pillar for roadway protection[J]. Coal Engineering, 2023, 55(12): 71−77.

    Google Scholar

    [51] 陆银龙, 韩磊, 吴开智, 等. 特厚煤层沿空掘巷力源结构特征与围岩协同控制策略[J]. 中国矿业大学学报, 2024, 53(2): 238−249.

    Google Scholar

    LU Y L, HAN L, WU K Z, et al. Characteristics of stress sources and comprehensive control strategies for surrounding rocks of gob−side driving entry in extra thick coal seam[J]. Journal of China University of Mining & Technology, 2024, 53(2): 238−249.

    Google Scholar

    [52] 霍丙杰, 孟繁禄, 李天航, 等. 多层坚硬顶板特厚煤层综放工作面小煤柱护巷技术[J]. 煤炭科学技术, 2024, 52(3): 13−23.

    Google Scholar

    HUO B J, MENG F L, LI T H, et al. Technology of small coal pillar in full−mechanized caving face with multi−layer hard roof and extremely thick coal seam[J]. Coal Science and Technology, 2024, 52(3): 13−23.

    Google Scholar

    [53] 张广辉, 蒋军军, 邓志刚, 等. 双巷掘进留小煤柱护巷下深浅孔组合爆破卸压技术研究[J]. 煤炭科学技术, 2023, 51(11): 33−40. doi: 10.12438/cst.2022-1532

    CrossRef Google Scholar

    ZHANG G H, JIANG J J, DENG Z G, et al. Research on pressure relief technology of combined blasting of deep and shallow holes under double roadway with small coal pillar[J]. Coal Science and Technology, 2023, 51(11): 33−40. doi: 10.12438/cst.2022-1532

    CrossRef Google Scholar

    [54] 徐佑林, 吴旭坤, 周波, 等. 煤矿巷道再造高强度承载结构快速支护技术及工程应用[J]. 煤炭科学技术, 2024, 52(2): 34−48.

    Google Scholar

    XU Y L, WU X K, ZHOU B, et al. Rapid support technology and engineering application of roadway reconstruction high strength bearing structure in coal mine[J]. Coal Science and Technology, 2019, 52 (2) : 34−48.

    Google Scholar

    [55] 吴少康, 郑伟, 吴旭坤, 等. 断层影响下巷道应力演化规律及围岩控制研究[J]. 矿业研究与开发, 2022, 42(4): 74−79.

    Google Scholar

    WU S K, ZHENG W, WU X K, et al. Research on stress evolution law and surrounding rock control of roadway under the influence of fault[J]. Mining Research and Development, 2022, 42(4): 74−79.

    Google Scholar

    [56] ZHANG B, LI Y, YANG X, et al. Influence of size and location of a pre−existing fracture on hydraulic fracture propagation path[J]. Geomechanics and Engineering, 2023, 32(3), 321−333.

    Google Scholar

    [57] 李鹏, 姜关照, 李红. 某煤矿深部软岩巷道围岩破坏特征及控制技术研究[J]. 矿产保护与利用, 2024, 44(4): 58−64.

    Google Scholar

    LI P, JIANG G Z, LI H. Study on failure characteristics and control technology of surrounding rock in deep soft rock roadway of a coal mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 58−64.

    Google Scholar

    [58] WU H, JIA J, GONG M, et al. Optimization of relief hole blasting satisfying synergistic constraints of rock−breaking area and hole−bottom minimum burden[J]. Tunnelling and Underground Space Technology, 2024, 154: 106074.

    Google Scholar

    [59] 贺国庆, 陈俊智, 任春芳, 等. 基于流固耦合理论的含水巷道稳定性影响因素研究[J]. 矿产保护与利用, 2024, 44(4): 102−110.

    Google Scholar

    HE G Q, CHEN J Z, REN C F, et al. Research on influencing factors of water−bearing roadway stability based on fluid−structure coupling theory[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 102−110.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(140) PDF downloads(13) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint