Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

RUI Xusheng, YANG Qingshuai, ZHOU Chuanhong, ZHANG Shixiong, ZHANG Hongwei, SONG Jiajun, WU Wenling. Research Progress on Shear Mechanical Properties of Deep High−temperature and High−pressure Rock Mass[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2025.02.001
Citation: RUI Xusheng, YANG Qingshuai, ZHOU Chuanhong, ZHANG Shixiong, ZHANG Hongwei, SONG Jiajun, WU Wenling. Research Progress on Shear Mechanical Properties of Deep High−temperature and High−pressure Rock Mass[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2025.02.001

Research Progress on Shear Mechanical Properties of Deep High−temperature and High−pressure Rock Mass

More Information
  • As a clean and renewable dominant resource for power generation in the geothermal field, deep dry hot rock is a premium−quality geothermal rock mass with high−temperature and high−pressure, low porosity and low permeability, it is necessary to carry out seepage−increasing mining through thermal storage water fracturing technology. In the process of hydraulic fracturing and reservoir construction, low−pressure water injection induces shear slip of fracture network or primary fracture, which promotes the fracture to realize dislocation support under its rough surface. It is one of the main technical methods of thermal reservoir permeability enhancement. Its theoretical basis is the shear mechanical properties of high−temperature and high−pressure rock mass. In order to spectify the research progress of shear mechanical behavior of high−temperature and high−pressure rock mass, based on the conventional shear mechanics theory and laboratory test methods, we generalize the research status of shear theoretical model of high temperature and pressure rock mass, introduce the progress of shear test equipment of high temperature and pressure rock mass, comprehensively review the shear physical and mechanical propertie, deformation and failure laws of high−temperature and high−pressure rock mass, summarize and discusse the influence mechanism of thermal stress and thermal shock effect on rock microstructure.

  • 加载中
  • [1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25−31.

    Google Scholar

    WANG J Y, HU S B, PANG Z H, et al. Estimate of geothermal resources potential for hot dry rock in continental area of China[J]. Science & Technology Review, 2012, 30(32): 25−31.

    Google Scholar

    [2] 国家能源局. 地热能术语: NB/T 10097−2018[S]. 北京: 中国石化出版社, 2018.

    Google Scholar

    National Energy Administration. Terminology of geothermal energy. NB/T 10097−2018[S]. Beijing: China Petrochemical Press, 2018.

    Google Scholar

    [3] 李胜涛, 张森琦, 贾小丰, 等. 干热岩勘查开发工程场地选址评价指标体系研究[J]. 中国地质调查, 2018, 5(2): 64−72.

    Google Scholar

    LI S T, ZHANG S Q, JIA X F, et al. Index system research of project site selection for dry hot rocks exploration[J]. Geological Survey of China, 2018, 5(2): 64−72.

    Google Scholar

    [4] 谭现锋, 张强, 战启帅, 等. 干热岩储层高温条件下岩石力学特性研究[J]. 钻探工程, 2023, 50(4): 110−117.

    Google Scholar

    TAN X F, ZHANG Q, ZHAN Q S, et al. Study on rock mechanical properties of hot−dry rock reservoir under high temperature[J]. Drilling Engineering, 2023, 50(4): 110−117.

    Google Scholar

    [5] 张超, 胡圣标, 黄荣华, 等. 干热岩地热资源热源机制研究现状及其对成因机制研究的启示[J]. 地球物理学进展, 2022, 37(5): 1907−1919.

    Google Scholar

    ZHANG C, HU S B, HUANG R H, et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics, 2022, 37(5): 1907−1919.

    Google Scholar

    [6] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449−459.

    Google Scholar

    WANG G L, ZHANG W, LIANG J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449−459.

    Google Scholar

    [7] 许家鼎, 张重远, 张浩, 等. 青海共和盆地干热岩地应力测量及其对储层压裂改造的意义[J]. 地学前缘, 2024, 31(6):130-144.

    Google Scholar

    XU J D, ZHANG C Y, ZHANG H, et al. In−situ stress measurements in hot dry rock of the Qinghai Gonghe Basin and their significance for reservoir fracture modification. Earth Science Frontiers[J]. Earth Science Frontiers, 2024, 31(6):130-144.

    Google Scholar

    [8] 郭亮亮. 增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D]. 长春: 吉林大学, 2016.

    Google Scholar

    GUO L L. Test and model research of hydraulic fracturing and reservoir damage evolution in enhanced geothermal system[D]. Changchun: Jilin University, 2016.

    Google Scholar

    [9] 李根生, 武晓光, 宋先知, 等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报, 2022, 7(3): 343−364.

    Google Scholar

    LI G S, WU X G, SONG X Z, et al. Status and challenges of hot dry rock geothermal resource exploitation[J]. Petroleum Science Bulletin, 2022, 7(3): 343−364.

    Google Scholar

    [10] 张洪伟. 裂隙岩体剪切—渗流—传热特性及断层地热开发研究[D]. 徐州: 中国矿业大学, 2020.

    Google Scholar

    ZHANG H W. Shear−seepage−heat transfer characteristics of rock fractures and a fault EGS system[D]. Xuzhou: China University of Mining & Technology, 2020.

    Google Scholar

    [11] 张洪伟, 万志军, 赵毅鑫, 等. 深层地热储层水力剪切增透机制研究进展[J]. 煤炭学报, 2021, 46(10): 3172−3185.

    Google Scholar

    ZHANG H W, WAN Z J, ZHAO Y X, et al. A review of the research on the mechanism of hydro−shearing in geothermal reservoir[J]. Journal of China Coal Society, 2021, 46(10): 3172−3185.

    Google Scholar

    [12] 李玮枢. 高温花岗岩水冷破裂模式与水压裂缝扩展规律研究[D]. 济南: 山东大学, 2020.

    Google Scholar

    LI W S. Study on water−cooling cracking modes and hydraulic fracture propagation law of high−temperature granite[D]. Ji’nan: Shandong University, 2020.

    Google Scholar

    [13] 张宁. 高温三轴应力下花岗岩蠕变—渗透—热破裂规律与地热开采研究[D]. 太原: 太原理工大学, 2014.

    Google Scholar

    ZHANG N. Research of creep−penetration−thermal cracking of granite under high temperature and 3D stresses and extraction of geothermal energy[D]. Taiyuan: Taiyuan university of technology, 2014.

    Google Scholar

    [14] 万志军, 赵阳升, 康建荣. 高温岩体地热资源模拟与预测方法[J]. 岩石力学与工程学报, 2005(6): 945−949.

    Google Scholar

    WAN Z J, ZHAO Y S, KANG J R. Simulation and forecast method of geothermal resources in hot dry rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(6): 945−949.

    Google Scholar

    [15] 郭沛. 热处理花岗岩物理力学及损伤特性研究[D]. 北京: 北京科技大学, 2023.

    Google Scholar

    GUO P. Study on physical and mechanical properties and damage characteristics of heat−treated granite[D]. Beijing: University of science and technology Beijing, 2023.

    Google Scholar

    [16] 黄晓辉. 高温处理后红砂岩剪切破坏特性试验研究[D]. 长沙: 中南大学, 2024.

    Google Scholar

    HUANG X H. Experimental study on shear failure characteristics of red sandstone after high temperature treatment[D]. Changsha: Central south university, 2024

    Google Scholar

    [17] 唐佳伟, 李井峰, 方杰, 等. 增强型地热系统实验模拟装置研发进展[J]. 科技导报, 2024, 42(15): 69−81.

    Google Scholar

    TANG J W, LI J F, FANG J, et al. On the development status and future direction of enhanced geother−mal system experimental simulation equipment[J]. Science & Technology Review, 2024, 42(15): 69−81.

    Google Scholar

    [18] 赵阳升, 万志军, 张渊, 等. 20MN伺服控制高温高压岩体三轴试验机的研制[J]. 岩石力学与工程学报, 2008(1): 1−8.

    Google Scholar

    ZHAO Y S, WAN Z J, ZHANG Y, et al. Research and development of 20 MN servo−controlled rock triaxial test system with high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(1): 1−8.

    Google Scholar

    [19] FRASH L P, GUTIERREZ M, HAMPTON J. True−triaxial apparatus for simulation of hydraulically fractured multi−borehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 496−506. doi: 10.1016/j.ijrmms.2014.05.017

    CrossRef Google Scholar

    [20] 孙勇, 翟成, 丛钰洲, 等. 温度冲击效应诱导干热岩孔裂隙结构演化及损伤破坏机制[J]. 煤炭学报, 2024, 49(12): 4855-4872.

    Google Scholar

    SUN Y, ZHAI C, CONG Y Z, et al. Pore fracture structure evolution and damage failure mechanism of hot dry rock induced by temperature impact effect[J]. Journal of China Coal Society, 2024, 49(12): 4855-4872.

    Google Scholar

    [21] 胡跃飞. 花岗岩物理力学和破裂特征随温度作用的演化规律研究[D]. 太原: 太原理工大学, 2023.

    Google Scholar

    HU Y F. Study on the evolution of physical−mechanical and fracture characteristics of granite with temperature effect[D]. Taiyuan: Taiyuan university of technology, 2023.

    Google Scholar

    [22] 吴星辉, 蔡美峰, 任奋华, 等. 不同热处理作用下花岗岩纵波波速和导热能力的演化规律分析[J]. 岩石力学与工程学报, 2022, 41(3): 457−467.

    Google Scholar

    WU X H, CAI M F, REN F H, et al. Evolutions of p−wave velocity and thermal conductivity of granite under different thermal treatments[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 457−467.

    Google Scholar

    [23] 陈墨香, 汪集旸, 邓孝. 中国地热资源−形成特点和潜力评估[M]. 北京: 科学出版社, 1994.

    Google Scholar

    CHEN M X, WANG J Y, DENG X. China's geothermal resources, the characteristics and potential evaluation[M]. Beijing: Science Press, 1994.

    Google Scholar

    [24] 张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190−198.

    Google Scholar

    ZHANG Y, FENG J Y, HE Z L, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3): 190−198.

    Google Scholar

    [25] 蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366−1381.

    Google Scholar

    LIN W J, WANG G L, SHAO J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration[J]. Acta Geologica Sinica, 2021, 95(5): 1366−1381.

    Google Scholar

    [26] 张炜, 金显鹏, 王海华, 等. 美国FORGE计划犹他州干热岩开发示范项目进展综述[J]. 世界科技研究与发展, 2024, 46(2): 263−276.

    Google Scholar

    ZHANG W, JIN X P, WANG H H, et al. Review on progress of the utah forge project for demonstration of hot dry rock development[J]. World Sci−Tech R & D 2024, 46(2): 263−276.

    Google Scholar

    [27] JONES C G. Petrologic, fluid inclusions and stable isotope (oxygen and carbon) studies of geothermal systems in utah and california[D]. Utah: The University of Utah, 2022.

    Google Scholar

    [28] GéRARD A, GENTER A, KOHL T, et al. The deep EGS (Enhanced Geothermal System) project at Soultz−sous−Forêts (Alsace, France) Soultz−sous−Forêts[J]. Geothermics, 2006, 35(5): 473−483.

    Google Scholar

    [29] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1−9.

    Google Scholar

    WANG G L, LIU Y G, ZHU X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1−9.

    Google Scholar

    [30] 许天福, 文冬光, 袁益龙. 干热岩地热能开发技术挑战与发展战略[J]. 地球科学, 2024, 49(6): 2131−2147.

    Google Scholar

    XU T F, WEN D G, YUAN Y L. Technical challenges and strategy of geothermal energy development from hot dry rock[J]. Earth Science, 2024, 49(6): 2131−2147.

    Google Scholar

    [31] 齐晓飞, 肖勇, 上官拴通, 等. 马头营深层干热岩人工造储裂缝扩展机理研究与应用[J]. 地学前缘, 2024, 31(6): 224−234.

    Google Scholar

    QI X F, XIAO Y, SHANGG S T. et al. Study and application on the fracture's propagation mechanism of artificially reservoir in deep hot dry rocks in Matouying, 2024,31(6): 224−234.

    Google Scholar

    [32] S. C. BANDIS, A. C. LUMSDEN, N. R. BARTON. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6).

    Google Scholar

    [33] GOODMAN R E. Methods of geological engineering in discontinuous rocks[M]. St. Paul : West Pub. Co, 1976.

    Google Scholar

    [34] SAEB S, AMADEI B. Modelling rock joints under shear and normal loading[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 267−278.

    Google Scholar

    [35] R. SIMON. Analysis of fault−slip mechanisms in hard rock mining[D]. Quebec/Montreal: McGill University, 1999.

    Google Scholar

    [36] 唐志成, 夏才初, 肖素光. 节理剪切应力−位移本构模型及剪胀现象分析[J]. 岩石力学与工程学报, 2011, 30(5): 917−925.

    Google Scholar

    TANG Z C, XIA C C, XIAO S G. Constitutive model for joint shear stress−displacement and analysis of dilation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 917−925.

    Google Scholar

    [37] 唐志成, 夏才初, 黄继辉, 等. 节理峰值后归一化位移软化模型[J]. 岩土力学, 2011, 32(7): 2013−2016+2024.

    Google Scholar

    TANG Z C, XIA C C, HUANG J H, et al. Post−peak normalized displacement softening model for discontinuous rock joint[J]. Rock and Soil Mechanics, 2011, 32(7): 2013−2016+2024.

    Google Scholar

    [38] PARK J W, LEE Y K, SONG J J, et al. A constitutive model for shear behavior of rock joints based on three−dimensional quantification of joint roughness[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1513−1537. doi: 10.1007/s00603-012-0365-4

    CrossRef Google Scholar

    [39] 肖卫国, 兑关锁, 陈铁林, 等. 剪胀和破坏耦合的节理岩体本构模型的研究[J]. 岩石力学与工程学报, 2009, 28(12): 2535−2543. doi: 10.3321/j.issn:1000-6915.2009.12.021

    CrossRef Google Scholar

    XIAO W G, DUI G S, CHEN T L, et al. A study of constitutive model coupling dilatancy and degradation for jointed rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2535−2543. doi: 10.3321/j.issn:1000-6915.2009.12.021

    CrossRef Google Scholar

    [40] 赵延林, 万文, 王卫军, 等. 随机形貌岩石节理剪切数值模拟和非线性剪胀模型[J]. 岩石力学与工程学报, 2013, 32(8): 1666−1676.

    Google Scholar

    ZHAO Y L, WAN W, WANG W J, et al. Shear numerical simulation of random morphology rock joint and nonlinear shear dilatancy model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1666−1676.

    Google Scholar

    [41] 郤保平, 何水鑫, 成泽鹏, 等. 传导加热下花岗岩中热冲击因子试验测定与演变规律分析[J]. 岩石力学与工程学报, 2020, 39(7): 1356−1368.

    Google Scholar

    XI B P, HE S X, CHENG Z P, et al. Thermal shock factor measurement and its evolution in granite under conduction heating[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1356−1368.

    Google Scholar

    [42] 唐世斌, 唐春安, 朱万成, 等. 热应力作用下的岩石破裂过程分析[J]. 岩石力学与工程学报, 2006(10): 2071−2078.

    Google Scholar

    TANG S B, TANG C A, ZHU W C, et al. Numerical investigation on rock failure process induced by thermal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(10): 2071−2078.

    Google Scholar

    [43] HOMAND−ETIENNE F, HOUPERT R. Thermally induced microcracking in granites: characterization and analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(2): 125−134.

    Google Scholar

    [44] 潘继良. 花岗岩高温及化学改性劣化机理与损伤演化规律研究[D]. 北京: 北京科技大学, 2023.

    Google Scholar

    PAN J L. Study on deterioration and damage mechanism of granite modified by high−temperature and chemical stimulation[D]. Beijing: University of science and technology Beijing, 2023.

    Google Scholar

    [45] TANG Z C, ZHANG Y. Temperature−dependent peak shear−strength criterion for granite fractures[J]. Engineering Geology, 2020, 269: 105552. doi: 10.1016/j.enggeo.2020.105552

    CrossRef Google Scholar

    [46] KUMARI W G P, RANJITH P G, PERERA M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in−situ stress and temperature conditions: An application to geothermal energy extraction[J]. Geothermics, 2017, 65: 44−59. doi: 10.1016/j.geothermics.2016.07.002

    CrossRef Google Scholar

    [47] GONG F Q, LUO S, LIN G, et al. Evaluation of shear strength parameters of rocks by preset angle shear, direct shear and triaxial compression tests[J]. Rock Mechanics and Rock Engineering, 2020, 53: 2505−2519. doi: 10.1007/s00603-020-02050-1

    CrossRef Google Scholar

    [48] 张鹏宇, 杨栋, 赵建忠. 实时高温作用下油页岩变角剪切特性实验研究[J]. 太原理工大学学报, 2022, 53(6): 1031−1037.

    Google Scholar

    ZHANG P Y, YANG D, ZHAO J Z. Experimental study on variable angle shear characteristics of oil shale under real−time high temperature[J]. Taiyuan University of Technology, 2022, 53(6): 1031−1037.

    Google Scholar

    [49] MENG F Z, HAN J, LI Z, et al. The sequence of heating and loading affects shear properties of granite fractures under high temperature[J]. Rock Mechanics and Rock Engineering, 2024, 57(9): 6543−6566. doi: 10.1007/s00603-024-03885-8

    CrossRef Google Scholar

    [50] WANG K, LIU Z, WU M, et al. Experimental study of mechanical properties of hot dry granite under thermal−mechanical couplings[J]. Geothermics, 2024, 119: 102974. doi: 10.1016/j.geothermics.2024.102974

    CrossRef Google Scholar

    [51] MICHIE U M L. Deep geological disposal of radioactive waste a historical review of the UK experience[J]. Interdisciplinary Science Reviews, 1998, 23(3): 242−257. doi: 10.1179/isr.1998.23.3.242

    CrossRef Google Scholar

    [52] 罗生银, 窦斌, 田红, 等. 自然冷却后与实时高温下花岗岩物理力学性质对比试验研究[J]. 地学前缘, 2020, 27(1): 178−184.

    Google Scholar

    LUO S Y, DOU B, TIAN H, et al. Comparative experimental study on physical and mechanical properties of granite after natural cooling and under real time high temperature[J]. Earth Science Frontiers, 2020, 27(1): 178−184.

    Google Scholar

    [53] ZHANG F, ZHAO J, HU D, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water−cooling treatment[J]. Rock Mechanics and Rock Engineering, 2018, 51: 677−694. doi: 10.1007/s00603-017-1350-8

    CrossRef Google Scholar

    [54] LIU J F. Creep characteristics of thermally−stressed Beishan granite under triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 162: 105302.

    Google Scholar

    [55] TANG Z C, SUN M, PENG J. Influence of high temperature duration on physical, thermal and mechanical properties of a fine−grained marble[J]. Applied Thermal Engineering, 2019, 156: 34−50. doi: 10.1016/j.applthermaleng.2019.04.039

    CrossRef Google Scholar

    [56] YANG S Q, XU P, LI Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments[J]. Geothermics, 2017, 69: 93−109. doi: 10.1016/j.geothermics.2017.04.009

    CrossRef Google Scholar

    [57] ZHU D. Experimental study on physico−mechanical responses and energy characteristics of granite under high temperature and hydro−mechanical coupling[J]. Case Studies in Thermal Engineering, 2024, 63: 105245.

    Google Scholar

    [58] ZHAO Z, DOU Z, XU H, et al. Shear behavior of beishan granite fractures after thermal treatment[J]. Engineering Fracture Mechanics, 2019, 213: 223−240. doi: 10.1016/j.engfracmech.2019.04.012

    CrossRef Google Scholar

    [59] ZHENG F. Research on the shear failure behavior and acoustic emission characteristics of natural sandstone structural surfaces after high−temperature treatment[J]. Environmental Earth Sciences, 2025, 84: 14.

    Google Scholar

    [60] TANG Z C. Experimental investigation on temperature−dependent shear behaviors of granite discontinuity[J]. Rock Mechanics and Rock Engineering, 2020, 53: 4043−4060. doi: 10.1007/s00603-020-02149-5

    CrossRef Google Scholar

    [61] ALNEASAN M. Thermo−mechanical behavior of sandstone joints: Findings from direct shear tests[J]. Engineering Geology, 2024, 340: 107671.

    Google Scholar

    [62] 万志军, 赵阳升, 董付科, 等. 高温及三轴应力下花岗岩体力学特性的实验研究[J]. 岩石力学与工程学报, 2008(1): 72−77.

    Google Scholar

    WAN Z J, ZHAO Y S, DONG F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(1): 72−77.

    Google Scholar

    [63] MA X, WANG G, HU D, et al. Mechanical properties of granite under real−time high temperature and three−dimensional stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104521. doi: 10.1016/j.ijrmms.2020.104521

    CrossRef Google Scholar

    [64] XU Z, ZHONG X, ZHANG S, et al. Experimental study on mechanical damage and creep characteristics of Gonghe granite under real−time high temperature[J]. Geothermics, 2024, 123: 103100. doi: 10.1016/j.geothermics.2024.103100

    CrossRef Google Scholar

    [65] GUO J, FENG Z J, LI X. Shear strength and energy evolution of granite under real−time temperature[J]. Sustainability, 2023, 15(11): 8471. doi: 10.3390/su15118471

    CrossRef Google Scholar

    [66] CHEN B, SHEN B, JIANG H. Shear behavior of intact granite under thermo−mechanical coupling and three−dimensional morphology of shear−formed fractures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(3): 523−537. doi: 10.1016/j.jrmge.2022.04.006

    CrossRef Google Scholar

    [67] 张塑彪, 张帆, 李康文, 等. 高温对不同粒径花岗岩剪切特性影响研究[J]. 岩土力学, 2024(10): 1−13.

    Google Scholar

    ZHANG S B, ZHANG F, LI K W, et al. Study on the influence of high temperature on the shear characteristics of granite with different particle sizes[J]. Rock and Soil Mechanics, 2024, 45(10): 2981−2993.

    Google Scholar

    [68] 马阳升. 实时高温作用下岩石力学特性实验研究[D]. 徐州: 中国矿业大学, 2019.

    Google Scholar

    MA Y S. Experimental study on rocks mechanical properties under real−time high temperature[D]. Xuzhou: China University of Mining & Technology, 2019.

    Google Scholar

    [69] ZHOU H, LIU Z, SHEN W, et al. Mechanical property and thermal degradation mechanism of granite in thermal−mechanical coupled triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105270. doi: 10.1016/j.ijrmms.2022.105270

    CrossRef Google Scholar

    [70] CHEN G, WANG J, LI J, et al. Influence of temperature on crack initiation and propagation in granite[J]. International Journal of Geomechanics, 2018, 18(8): 04018094. doi: 10.1061/(ASCE)GM.1943-5622.0001182

    CrossRef Google Scholar

    [71] LIU Z, WANG H, LI Y, et al. Triaxial compressive strength, failure, and rockburst potential of granite under high−stress and ground−temperature coupled conditions[J]. Rock Mechanics and Rock Engineering, 2023, 56(2): 911−932. doi: 10.1007/s00603-022-03066-5

    CrossRef Google Scholar

    [72] LIU Z, WANG C, ZHANG M, et al. Cracking property and brittleness evaluation of granite under high−temperature true triaxial compression in geothermal systems[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 2023, 9(1): 99. doi: 10.1007/s40948-023-00631-2

    CrossRef Google Scholar

    [73] WANG P, WANG C, WANG G, et al. Experiment study on shear behavior and properties of granite fractures under real−time high−temperature conditions[J]. Geomechanics for Energy and the Environment, 2024, 38: 100539. doi: 10.1016/j.gete.2024.100539

    CrossRef Google Scholar

    [74] LI Y Y, DANG J M, ZHANG S C, et al. Shear mechanical properties and surface damage characteristics of granite fractures treated by real−time high temperature[J]. Journal of Central South University, 2023, 30(6): 2004−2017. doi: 10.1007/s11771-023-5357-x

    CrossRef Google Scholar

    [75] JIANG T. Thermal stimulation mechanical response and shear dilatation predictive model improvement of granite fractures in an enhanced geothermal system[J]. Journal of Materials Research and Technology, 2024, 28: 4334-4349.

    Google Scholar

    [76] 王磊, 张睿, 杨栋, 等. 实时高温富有机质页岩变角剪切力学特性及应变场演化研究[J]. 岩土力学, 2023, 44(9): 2579−2592.

    Google Scholar

    WANG L, ZHANG R, YANG D, et al. Mechanical properties and strain field evolution of organic−rich shale with variable angle shear at real−time high−temperature[J]. Rock and Soil Mechanics, 2023, 44(9): 2579−2592.

    Google Scholar

    [77] 卢运虎, 王世永, 陈勉, 等. 高温热处理共和盆地干热岩力学特性实验研究[J]. 地下空间与工程学报, 2020, 16(1): 114−121.

    Google Scholar

    LU Y H, WANG S Y, CHEN M. er al. Experimental study on mechanical properties of hot dry rock.[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 114−121.

    Google Scholar

    [78] 廖安杰, 张岩, 王飞, 等. 实时高温作用下砂岩的热损伤与能量特征[J]. 地球科学,2025, 50(1): 286-298.

    Google Scholar

    LIAO A J, ZHANG Y, WANG F, et al. Thermal damage and energy characteristics of sandstone under real time high temperature[J]. Earth Science, 2025, 50(1): 286-298.

    Google Scholar

    [79] 徐小丽, 高峰, 张志镇. 高温后围压对花岗岩变形和强度特性的影响[J]. 岩土工程学报, 2014, 36(12): 2246−2252.

    Google Scholar

    XU X L, GAO F, ZHANG Z Z. Influence of confining pressure on deformation and strength properties of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2246−2252.

    Google Scholar

    [80] WANG X, SHAN T, LIU S, et al. Thermal−damage effects on fracturing evolution of granite under compression−shear loading[J]. Theoretical and Applied Fracture Mechanics, 2024, 133: 104581. doi: 10.1016/j.tafmec.2024.104581

    CrossRef Google Scholar

    [81] ZHANG C, LI D, LUO P, et al. Compression−shear failure of thermally treated granite: insights from digital image correlation analysis[J]. Geothermics, 2025, 125: 103157. doi: 10.1016/j.geothermics.2024.103157

    CrossRef Google Scholar

    [82] JIANG H, CHEN T, KANG F, et al. Morphological features of fractures developed by direct shearing of intact granites after water cooling cycles[J]. ACS omega, 2023, 8(15): 13639−13648. doi: 10.1021/acsomega.2c07600

    CrossRef Google Scholar

    [83] YANG S Q. Effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Mechanical Behavior and Damage Fracture Mechanism of Deep Rocks, 2022: 405−437.

    Google Scholar

    [84] JIN Y, HE C, YAO C, et al. Experimental and numerical simulation study on the evolution of mechanical properties of granite after thermal treatment[J]. Computers and Geotechnics, 2024, 172: 106464. doi: 10.1016/j.compgeo.2024.106464

    CrossRef Google Scholar

    [85] YIN Q, WU J, ZHU C, et al. Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 2021, 7: 1−17. doi: 10.1007/s40948-020-00190-w

    CrossRef Google Scholar

    [86] WANG S, WANG L, REN B, et al. Mechanical behavior and fracture characteristics of high−temperature sandstone under true triaxial loading conditions[J]. Journal of Materials Research and Technology, 2024, 28: 569−581. doi: 10.1016/j.jmrt.2023.11.260

    CrossRef Google Scholar

    [87] LIU B, XIE H, HU J, et al. Failure mechanism of hot dry rock under the coupling effect of thermal cycling and direct shear loading path[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 176: 105695. doi: 10.1016/j.ijrmms.2024.105695

    CrossRef Google Scholar

    [88] 阴伟涛, 冯子军. 高温高压下不同结构形式裂缝充填花岗岩热力学特性[J]. 煤炭学报, 2024, 49(6): 2660−2674.

    Google Scholar

    YIN W T, FENG Z J. Thermal and mechanical properties of fracture−filled granite with different structural forms under high temperature and high pressure[J]. Journal of China Coal Society, 2024, 49(6): 2660−2674.

    Google Scholar

    [89] MENG F, YUE Z, ZHOU X, et al. Fracture slip behavior in granite under high−temperature true triaxial loading tests[J]. Rock Mechanics and Rock Engineering, 2024, 57(11): 9669−9694. doi: 10.1007/s00603-024-04060-9

    CrossRef Google Scholar

    [90] KANT M A, AMMANN J, ROSSI E, et al. Thermal properties of central are granite for temperatures up to 500 ℃: Irreversible changes due to thermal crack formation[J]. Geophysical Research Letters, 2017, 44(2): 771−776. doi: 10.1002/2016GL070990

    CrossRef Google Scholar

    [91] CHEN Y, ZHANG C, ZHAO Z, et al. Shear behavior of artificial and natural granite fractures after heating and water−cooling treatment[J]. Rock Mechanics and Rock Engineering, 2020, 53: 5429−5449. doi: 10.1007/s00603-020-02221-0

    CrossRef Google Scholar

    [92] 赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28−34.

    Google Scholar

    ZHAO Y S, MENG Q R, KANG T H, et al. Micro−CT experimental technology and meso−investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28−34.

    Google Scholar

    [93] GUO P, BU M, ZHANG P, et al. Mechanical properties and crack propagation behavior of granite after high temperature treatment based on a thermo−mechanical grain−based model[J]. Rock Mechanics and Rock Engineering, 2023, 56(9): 6411−6435. doi: 10.1007/s00603-023-03408-x

    CrossRef Google Scholar

    [94] FAN L, GAO J, DU X, et al. Spatial gradient distributions of thermal shock−induced damage to granite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(5): 917−926. doi: 10.1016/j.jrmge.2020.05.004

    CrossRef Google Scholar

    [95] PENG L. Analysis of physical and mechanical behaviors and microscopic mineral characteristics of thermally damaged granite[J]. Scientific Reports, 2024, 14(1): 14776. doi: 10.1038/s41598-024-65752-4

    CrossRef Google Scholar

    [96] 孙晋, 胡耀青, 靳佩桦, 等. 花岗岩700℃热损伤核磁共振定量表征[J]. 矿业研究与开发, 2023, 43(6): 121−126.

    Google Scholar

    SUN J, HU Y Q, JIN P H, et al. Quantitative characterization of granite thermal damage at 700℃ by nuclear magnetic resonance[J]. Mining Research and Development, 2023, 43(6): 121−126.

    Google Scholar

    [97] 卜墨华, 郭平业, 金鑫, 等. 高温损伤花岗岩细观结构演化试验研究[J]. 岩石力学与工程学报, 2024, 43(11): 2639-2654.

    Google Scholar

    BU M H, GUO P Y, JIN X, er al. Experimental study on evolution of meso−structure of granite subjected to high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(11): 2639-2654.

    Google Scholar

    [98] WANG T, WANG J, ZHANG X, et al. Experimental investigation on the macro− and micromechanical properties of water−cooled granite at different high temperatures[J]. Scientific Reports, 2024, 14(1): 17149. doi: 10.1038/s41598-024-68388-6

    CrossRef Google Scholar

    [99] LI C, FENG G, ZHANG X, et al. Study on the failure mechanism of high−temperature granite under two cooling modes[J]. Scientific Reports, 2024, 14(1): 15630. doi: 10.1038/s41598-024-66073-2

    CrossRef Google Scholar

    [100] LIANG Q, HUANG G, HUANG J, et al. Effects of different cooling treatments on heated granite: insights from the physical and mechanical characteristics[J]. Materials, 2024, 17(18): 4539. doi: 10.3390/ma17184539

    CrossRef Google Scholar

    [101] 王嘉敏, 王守光, 李向上, 等. 热冲击花岗岩力学响应及损伤特征显微CT试验研究[J]. 煤炭科学技术, 2023, 51(8): 58−72.

    Google Scholar

    WANG J M, WANG S G, LI X S, et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology, 2023, 51(8): 58−72.

    Google Scholar

    [102] 何将福, 任成程, 何坤, 等. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律[J]. 煤田地质与勘探, 2024, 52(12): 131−142.

    Google Scholar

    HE J F, REN C C, HE K, et al. Microscopic fracture characterization and permeability evolutionary patterns of granites under cyclic thermal shock[J]. Coal Geology & Exploration, 2024, 52(12): 13.

    Google Scholar

    [103] ISAKA B L A, RANJITH P G, RATHNAWEERA T D, et al. Quantification of thermally−induced microcracks in granite using X−ray CT imaging and analysis[J]. Geothermics, 2019, 81: 152−167. doi: 10.1016/j.geothermics.2019.04.007

    CrossRef Google Scholar

    [104] LI W, LI Q, QIAN Y, et al. Structural properties and failure characteristics of granite after thermal treatment and water cooling[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 2023, 9(1): 171. doi: 10.1007/s40948-023-00716-y

    CrossRef Google Scholar

    [105] XI Y, XING J, JIANG H, et al. Pore characteristic evolution and damage deterioration of granite subjected to the thermal and cooling treatments combined with the NMR method[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(5): 182. doi: 10.1007/s10064-023-03215-2

    CrossRef Google Scholar

    [106] LONG K, WU Y, ZHANG R, et al. Variations of physical and mechanical properties of granite with different cooling treatments: an experimental study[J]. Physics of Fluids, 2024, 36(12): 127105.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(281) PDF downloads(29) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint