Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 1
Article Contents

QU Tie, MA Lifeng, SONG Xianzhou, WANG Zhaohua, ZHANG Shengqi, ZHAO Yanlong, JI Haonan. Coupling Simulation Method and Experiment of Vertical Stirring Mill Based on DEM−CFD[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 15-22. doi: 10.13779/j.cnki.issn1001-0076.2025.01.001
Citation: QU Tie, MA Lifeng, SONG Xianzhou, WANG Zhaohua, ZHANG Shengqi, ZHAO Yanlong, JI Haonan. Coupling Simulation Method and Experiment of Vertical Stirring Mill Based on DEM−CFD[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 15-22. doi: 10.13779/j.cnki.issn1001-0076.2025.01.001

Coupling Simulation Method and Experiment of Vertical Stirring Mill Based on DEM−CFD

More Information
  • A coupling simulation method and experiment based on DEM−CFD were investigated to address the complex multi−phase coupling motion of spiral agitators, grinding media, and slurry inside the cylinder of a vertical stirring mill. Firstly, based on the working principle, the Discrete Element Method (DEM) was used to simulate the particle phase and Computational Fluid Dynamics (CFD) to simulate the fluid phase, respectively. A theoretical model of fluid−solid coupling inside the cylinder was constructed. Secondly, a simplified model of the experimental prototype was established, and the construction methods and parameters of the grinding sphere (DEM), slurry (CFD), and DEM−CFD coupling model were investigated, respectively. Then, the accuracy of different simulation models was verified by experiments. The results showed that the DEM−CFD simulation results were closer to the experimental values than DEM, there was a deviation of 5.43% between the torque obtained from DEM−CFD model and the experimental torque, while the DEM model had a deviation of 8.14%. By comparing the velocity, collision frequency, and agitator torque of the grinding spheres inside the cylinder, it was found that the slurry as a fluid domain had a significant impact on the movement of the grinding spheres. Its buoyancy and viscosity characteristics reduced the velocity and collision frequency, whereas it increased the torque of the spiral agitator.

  • 加载中
  • [1] 瞿铁, 仝丽娟, 杨纪昌. 东鞍山烧结厂铁精矿细磨中立磨机与球磨机的比能耗研究[J]. 矿山机械, 2021, 49(10): 26−30.

    Google Scholar

    QU T, TONG L J, YANG J C. Study on specific energy consumption of neutral mill and ball mill in fine grinding of iron concentrate in Donganshan Sintering Plant[J]. Mining Machinery, 2021, 49(10): 26−30.

    Google Scholar

    [2] 龙渊, 刘瑜, 肖骁, 等. 秦皇岛某微细粒铁矿搅拌磨细磨—磁选工艺试验研究[J]. 矿产保护与利用, 2021, 41(5): 123−126.

    Google Scholar

    LONG Y, LIU Y, XIAO X, et al. Research on technology optimization of fine grinding and magnetic separation for a fine − grained iron ore in Qinhuangdao[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 123−126.

    Google Scholar

    [3] KUMAR A, SAHU R, TRIPATHY K S. Energy−efficient advanced ultrafine grinding of particles using stirred mills− a review[J]. Energies, 2023, 16: 5277.

    Google Scholar

    [4] 肖正明, 王鑫, 伍星, 等. 塔磨机运行参数优化匹配的仿真分析与试验研究[J]. 中国机械工程, 2016, 27(4): 483−487. doi: 10.3969/j.issn.1004-132X.2016.04.011

    CrossRef Google Scholar

    XIAO Z M, WANG X, WU X, et al. Simulation analysis and experimental study on optimal matching of tower mill operation parameters[J]. China Mechanical Engineering, 2016, 27(4): 483−487. doi: 10.3969/j.issn.1004-132X.2016.04.011

    CrossRef Google Scholar

    [5] 谢朋书, 崔达, 王国强, 等. 基于离散元的立式螺旋搅拌磨机工作性能[J/OL]. 吉林大学学报(工学版): 1−9 [2024−05−15]. https://kns.cnki.net/kcms/detail//22.1341.T.20230227.2028.001.html.

    Google Scholar

    XIE P S, CUI D, WANG G Q, et al. Working performance of vertical spiral stirring mill based on discrete element [J/OL]. Journal of Jilin University (Engineering Edition): 1−9 [2024−05−15]. https://kns.cnki.net/kcms/ detail//22.1341.T.20230227.2028.001.html.

    Google Scholar

    [6] 母福生, 杨鹏. 搅拌磨机介质运动离散元数值模拟分析[J]. 中国机械工程, 2012, 23(20): 2465−2468. doi: 10.3969/j.issn.1004-132X.2012.20.015

    CrossRef Google Scholar

    MU F S, YANG P. Discrete element numerical simulation analysis of media movement in stirring mill[J]. China Mechanical Engineering, 2012, 23(20): 2465−2468. doi: 10.3969/j.issn.1004-132X.2012.20.015

    CrossRef Google Scholar

    [7] 孙小旭, 祝启恒, 姚建超, 等. 基于CFD超细磨用搅拌装置关键参数影响研究[J]. 有色金属(选矿部分), 2020(1): 76−81+97.

    Google Scholar

    SUN X X, ZHU Q H, YAO J C, et al. Study on the influence of key parameters of stirring device for ultra−fine grinding based on CFD[J]. Nonferrous Metals (Mineral Processing), 2020(1): 76−81+97.

    Google Scholar

    [8] RHYMER D R, INGRAM A, SADLER K, et al. A discrete element method investigation within vertical stirred milling: Changing the grinding media restitution and sliding friction coefficients[J]. Powder Technology, 2022, 410: 117825. doi: 10.1016/j.powtec.2022.117825

    CrossRef Google Scholar

    [9] ESTEVES P M, MAZZINGHY B D, GALÉRY R G, et al. Industrial vertical stirred mills screw liner wear profile compared to discrete element method simulations[J]. Minerals, 2021, 11(4): 397−397. doi: 10.3390/min11040397

    CrossRef Google Scholar

    [10] OLIVEIRA A, RODRIGUEZ V, CARVALHO D R, et al. Mechanistic modeling and simulation of a batch vertical stirred mill[J]. Minerals Engineering, 2020, 156: 106487.

    Google Scholar

    [11] 刘伟, 刘俊, 程波, 等. 基于流固耦合的搅拌磨磨矿离散元仿真及试验研究[J]. 金属矿山, 2023(10): 189−195.

    Google Scholar

    LIU W, LIU J, CHENG B, et al. Discrete element simulation and experimental study of stirring grinding based on fluid−solid coupling[J]. Metal Mine, 2023(10): 189−195.

    Google Scholar

    [12] 宁晓斌, 孙新明, 佘翊妮, 等. 搅拌磨DEM−CFD耦合仿真研究及搅拌器强度分析[J]. 有色金属工程, 2016, 6(4): 63−67+72.

    Google Scholar

    NING X B, SUN X M, SHE Y N, et al. Study on DEM−CFD coupling simulation of stirring mill and strength analysis of agitator[J]. Nonferrous Metal Engineering, 2016, 6(4): 63−67+72.

    Google Scholar

    [13] JAYASUNDARA C T, YANG R, GUO B, et al. CFD−DEM modelling of particle flow in IsaMills− comparison between simulations and PEPT measurements[J]. Minerals Engineering, 2011, 24: 181−187.

    Google Scholar

    [14] BEINERT S, FRAGNIÈRE G, SCHILDE C, et al. Analysis and modelling of bead contacts in wet−operating stirred media and planetary ball mills with CFD–DEM simulations[J]. Chemical Engineering Science, 2015, 134: 648−662.

    Google Scholar

    [15] LARSSON S, RODRÍGUEZ PRIETO J M, HEISKARI H, et al. A novel particle−based approach for modeling a wet vertical stirred media mill[J]. Minerals, 2021, 11(1): 55.

    Google Scholar

    [16] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.

    Google Scholar

    WANG F J. Computational fluid dynamics analysis: Principles and applications of CFD software[M]. Beijing: Tsinghua University Publishing House, 2004.

    Google Scholar

    [17] 李凯. 立式螺旋搅拌磨机粉磨过程数值模拟研究[D]. 长春: 吉林大学, 2016.

    Google Scholar

    LI K. Study on the numerical simulation of the vertical spiral stirred mill grinding process[D]. Changchun: Jilin University, 2016.

    Google Scholar

    [18] 彭恺然, 刘红帅, 平新雨, 等. CFD−DEM耦合模拟中拖曳力模型精度[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1400−1407.

    Google Scholar

    PENG K R, LIU H S, PING X Y, et al. Accuracy of drag force model in CFD−DEM coupling simulation[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1400−1407.

    Google Scholar

    [19] 杨国彪, 王朝华, 王志霞, 等. 物料动态安息角对矿用自卸车厢斗结构影响规律[J]. 科学技术与工程, 2024, 24(5): 2099−2104.

    Google Scholar

    YANG G B, WANG Z H, WANG Z X, et al. Effects law of material dynamic rest angle on the structure of mining dump truck carriage[J]. Science Technology and Engineering, 2024, 24(5): 2099−2104.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(176) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint