Citation: | QU Tie, MA Lifeng, SONG Xianzhou, WANG Zhaohua, ZHANG Shengqi, ZHAO Yanlong, JI Haonan. Coupling Simulation Method and Experiment of Vertical Stirring Mill Based on DEM−CFD[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 15-22. doi: 10.13779/j.cnki.issn1001-0076.2025.01.001 |
A coupling simulation method and experiment based on DEM−CFD were investigated to address the complex multi−phase coupling motion of spiral agitators, grinding media, and slurry inside the cylinder of a vertical stirring mill. Firstly, based on the working principle, the Discrete Element Method (DEM) was used to simulate the particle phase and Computational Fluid Dynamics (CFD) to simulate the fluid phase, respectively. A theoretical model of fluid−solid coupling inside the cylinder was constructed. Secondly, a simplified model of the experimental prototype was established, and the construction methods and parameters of the grinding sphere (DEM), slurry (CFD), and DEM−CFD coupling model were investigated, respectively. Then, the accuracy of different simulation models was verified by experiments. The results showed that the DEM−CFD simulation results were closer to the experimental values than DEM, there was a deviation of 5.43% between the torque obtained from DEM−CFD model and the experimental torque, while the DEM model had a deviation of 8.14%. By comparing the velocity, collision frequency, and agitator torque of the grinding spheres inside the cylinder, it was found that the slurry as a fluid domain had a significant impact on the movement of the grinding spheres. Its buoyancy and viscosity characteristics reduced the velocity and collision frequency, whereas it increased the torque of the spiral agitator.
[1] | 瞿铁, 仝丽娟, 杨纪昌. 东鞍山烧结厂铁精矿细磨中立磨机与球磨机的比能耗研究[J]. 矿山机械, 2021, 49(10): 26−30. QU T, TONG L J, YANG J C. Study on specific energy consumption of neutral mill and ball mill in fine grinding of iron concentrate in Donganshan Sintering Plant[J]. Mining Machinery, 2021, 49(10): 26−30. |
[2] | 龙渊, 刘瑜, 肖骁, 等. 秦皇岛某微细粒铁矿搅拌磨细磨—磁选工艺试验研究[J]. 矿产保护与利用, 2021, 41(5): 123−126. LONG Y, LIU Y, XIAO X, et al. Research on technology optimization of fine grinding and magnetic separation for a fine − grained iron ore in Qinhuangdao[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 123−126. |
[3] | KUMAR A, SAHU R, TRIPATHY K S. Energy−efficient advanced ultrafine grinding of particles using stirred mills− a review[J]. Energies, 2023, 16: 5277. |
[4] | 肖正明, 王鑫, 伍星, 等. 塔磨机运行参数优化匹配的仿真分析与试验研究[J]. 中国机械工程, 2016, 27(4): 483−487. doi: 10.3969/j.issn.1004-132X.2016.04.011 XIAO Z M, WANG X, WU X, et al. Simulation analysis and experimental study on optimal matching of tower mill operation parameters[J]. China Mechanical Engineering, 2016, 27(4): 483−487. doi: 10.3969/j.issn.1004-132X.2016.04.011 |
[5] | 谢朋书, 崔达, 王国强, 等. 基于离散元的立式螺旋搅拌磨机工作性能[J/OL]. 吉林大学学报(工学版): 1−9 [2024−05−15]. https://kns.cnki.net/kcms/detail//22.1341.T.20230227.2028.001.html. XIE P S, CUI D, WANG G Q, et al. Working performance of vertical spiral stirring mill based on discrete element [J/OL]. Journal of Jilin University (Engineering Edition): 1−9 [2024−05−15]. https://kns.cnki.net/kcms/ detail//22.1341.T.20230227.2028.001.html. |
[6] | 母福生, 杨鹏. 搅拌磨机介质运动离散元数值模拟分析[J]. 中国机械工程, 2012, 23(20): 2465−2468. doi: 10.3969/j.issn.1004-132X.2012.20.015 MU F S, YANG P. Discrete element numerical simulation analysis of media movement in stirring mill[J]. China Mechanical Engineering, 2012, 23(20): 2465−2468. doi: 10.3969/j.issn.1004-132X.2012.20.015 |
[7] | 孙小旭, 祝启恒, 姚建超, 等. 基于CFD超细磨用搅拌装置关键参数影响研究[J]. 有色金属(选矿部分), 2020(1): 76−81+97. SUN X X, ZHU Q H, YAO J C, et al. Study on the influence of key parameters of stirring device for ultra−fine grinding based on CFD[J]. Nonferrous Metals (Mineral Processing), 2020(1): 76−81+97. |
[8] | RHYMER D R, INGRAM A, SADLER K, et al. A discrete element method investigation within vertical stirred milling: Changing the grinding media restitution and sliding friction coefficients[J]. Powder Technology, 2022, 410: 117825. doi: 10.1016/j.powtec.2022.117825 |
[9] | ESTEVES P M, MAZZINGHY B D, GALÉRY R G, et al. Industrial vertical stirred mills screw liner wear profile compared to discrete element method simulations[J]. Minerals, 2021, 11(4): 397−397. doi: 10.3390/min11040397 |
[10] | OLIVEIRA A, RODRIGUEZ V, CARVALHO D R, et al. Mechanistic modeling and simulation of a batch vertical stirred mill[J]. Minerals Engineering, 2020, 156: 106487. |
[11] | 刘伟, 刘俊, 程波, 等. 基于流固耦合的搅拌磨磨矿离散元仿真及试验研究[J]. 金属矿山, 2023(10): 189−195. LIU W, LIU J, CHENG B, et al. Discrete element simulation and experimental study of stirring grinding based on fluid−solid coupling[J]. Metal Mine, 2023(10): 189−195. |
[12] | 宁晓斌, 孙新明, 佘翊妮, 等. 搅拌磨DEM−CFD耦合仿真研究及搅拌器强度分析[J]. 有色金属工程, 2016, 6(4): 63−67+72. NING X B, SUN X M, SHE Y N, et al. Study on DEM−CFD coupling simulation of stirring mill and strength analysis of agitator[J]. Nonferrous Metal Engineering, 2016, 6(4): 63−67+72. |
[13] | JAYASUNDARA C T, YANG R, GUO B, et al. CFD−DEM modelling of particle flow in IsaMills− comparison between simulations and PEPT measurements[J]. Minerals Engineering, 2011, 24: 181−187. |
[14] | BEINERT S, FRAGNIÈRE G, SCHILDE C, et al. Analysis and modelling of bead contacts in wet−operating stirred media and planetary ball mills with CFD–DEM simulations[J]. Chemical Engineering Science, 2015, 134: 648−662. |
[15] | LARSSON S, RODRÍGUEZ PRIETO J M, HEISKARI H, et al. A novel particle−based approach for modeling a wet vertical stirred media mill[J]. Minerals, 2021, 11(1): 55. |
[16] | 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. WANG F J. Computational fluid dynamics analysis: Principles and applications of CFD software[M]. Beijing: Tsinghua University Publishing House, 2004. |
[17] | 李凯. 立式螺旋搅拌磨机粉磨过程数值模拟研究[D]. 长春: 吉林大学, 2016. LI K. Study on the numerical simulation of the vertical spiral stirred mill grinding process[D]. Changchun: Jilin University, 2016. |
[18] | 彭恺然, 刘红帅, 平新雨, 等. CFD−DEM耦合模拟中拖曳力模型精度[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1400−1407. PENG K R, LIU H S, PING X Y, et al. Accuracy of drag force model in CFD−DEM coupling simulation[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1400−1407. |
[19] | 杨国彪, 王朝华, 王志霞, 等. 物料动态安息角对矿用自卸车厢斗结构影响规律[J]. 科学技术与工程, 2024, 24(5): 2099−2104. YANG G B, WANG Z H, WANG Z X, et al. Effects law of material dynamic rest angle on the structure of mining dump truck carriage[J]. Science Technology and Engineering, 2024, 24(5): 2099−2104. |
Schematic diagram of working process of vertical stirring mill
Experimental prototype and simplified model: (a) experimental prototype; (b) simplified model
Discrete element model
CFD model of the fluid domain
Velocity diagram of the medium ball (t=2 s): (a—DEM−CFD; b—DEM)
Variation of average speed over time
Variation of torque over time
Variation of collision frequency over time
Experimental torque