Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 1
Article Contents

XU Qianqian, GUO Jinping, WANG Xiaolin, LIU Yaxiong, XUE Tao. Research on Optimization of Cut−off Grade in Polymetallic Mines Using Imperialist Competitive Algorithm[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 8-14. doi: 10.13779/j.cnki.issn1001-0076.2024.08.020
Citation: XU Qianqian, GUO Jinping, WANG Xiaolin, LIU Yaxiong, XUE Tao. Research on Optimization of Cut−off Grade in Polymetallic Mines Using Imperialist Competitive Algorithm[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 8-14. doi: 10.13779/j.cnki.issn1001-0076.2024.08.020

Research on Optimization of Cut−off Grade in Polymetallic Mines Using Imperialist Competitive Algorithm

More Information
  • Cut−off grade is an important decision parameter in mining operations. In multi metal mining projects, determining a reasonable cut−off grade is the foundation for obtaining greater economic benefits for subsequent mining. Based on the maximum net present value method, a dynamic optimization model for the comprehensive cut−off grade of a polymetallic mine based on ICA algorithm was constructed for the two−stage production process of mining and selection. The optimal cut−off grade of a certain silver lead mine was dynamically determined. The example application shows that the model is suitable for determining the cut−off grade of polymetallic mines. During the lifespan of the mine, the optimal cut−off grade for a Pb−Au−Ag polymetallic material determined by the ICA algorithm was 2.619%, which later decreased to 1.331%. The total net present value of the mine was 1274.5753 million yuan; Compared with the Lane method, this model has global search ability and is more advantageous in dynamic optimization of cut−off grade indicators in the later stage of mining, providing new ideas for determining reasonable cut−off grade indicators in mines.

  • 加载中
  • [1] 冯巧云, 马涛, 邓宇. 普通克里格法在草桃背铀矿床资源量估算中的应用[J]. 金属矿山, 2023(12): 171−176.

    Google Scholar

    FENG Q Y, MA T, DENG Y. Application of ordinary Kriging method in resource estimation of Caotaobei uranium deposit[J]. Metal Mines, 2023(12): 171−176.

    Google Scholar

    [2] 杨占峰, 王晗, 侯晓志. 白云鄂博东矿露天境界外铁矿体开采探讨[J]. 稀土, 2022, 43(3): 1−8.

    Google Scholar

    YANG Z F, WANG H, HOU X Z. Exploration of iron ore body mining outside the open−pit cut−off of Bayan Ebo East Mine[J]. Rare Earth, 2022, 43(3): 1−8

    Google Scholar

    [3] 王青, 顾晓薇, 胥孝川. 边界品位对露天矿最佳境界及总利润的影响[J]. 东北大学学报(自然科学版), 2018, 39(8): 1187−1191. doi: 10.12068/j.issn.1005-3026.2018.08.024

    CrossRef Google Scholar

    WANG Q, GU X W, XU X C. The influence of cut−off grade on the optimal state and total profit of open−pit mines[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39(8): 1187−1191. doi: 10.12068/j.issn.1005-3026.2018.08.024

    CrossRef Google Scholar

    [4] 熊涛. 国内某铅锌银矿矿床工业指标制定[J]. 有色冶金设计与研究, 2023, 44(4): 1−5. doi: 10.3969/j.issn.1004-4345.2023.04.001

    CrossRef Google Scholar

    XIONG T. Industrial indicator formulation for a domestic lead zinc silver deposit[J]. Nonferrous Metallurgical Design and Research, 2023, 44(4): 1−5. doi: 10.3969/j.issn.1004-4345.2023.04.001

    CrossRef Google Scholar

    [5] 魏进平. 沙溪铜矿矿床工业指标探讨[J]. 世界有色金属, 2022(9): 100−102. doi: 10.3969/j.issn.1002-5065.2022.09.034

    CrossRef Google Scholar

    WEI J P. Discussion on industrial indicators of Shaxi copper deposit[J]. World Nonferrous Metals, 2022(9): 100−102. doi: 10.3969/j.issn.1002-5065.2022.09.034

    CrossRef Google Scholar

    [6] 徐静, 吕宏芝, 陈丙强, 等. 四川某铜矿矿床工业指标的探讨[J]. 矿业研究与开发, 2016, 36(10): 140−146.

    Google Scholar

    XU J, LV H Z, CHEN B Q, et al. Discussion on industrial indicators of a copper deposit in Sichuan[J]. Mining Research and Development, 2016, 36(10): 140−146.

    Google Scholar

    [7] LANE K F. The economic definition of ore: Cut−off grades in theory and practice[M]. Mining Journal Books, 1988.

    Google Scholar

    [8] ASAD M W A. Optimum cut−off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation[J]. Engineering Computations, 2007, 24(7): 723−736. doi: 10.1108/02644400710817961

    CrossRef Google Scholar

    [9] GITHIRIA J, MUSINGWINI C. A stochastic cut−off grade optimization model to incorporate uncertainty for improved project value[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2019, 119(3): 217−228.

    Google Scholar

    [10] PAITHANKAR A, CHATTERJEE S, GOODFELLOW R, et al. Simultaneous stochastic optimization of production sequence and dynamic cut−off grades in an open pit mining operation[J]. Resources Policy, 2020, 66: 101634. doi: 10.1016/j.resourpol.2020.101634

    CrossRef Google Scholar

    [11] BALCI M, KUMRAL M. Impacts of grade distribution and economies of scale on cut−off grade and capacity planning[J]. Mining, Metallurgy & Exploration, 2024: 1−23.

    Google Scholar

    [12] 万贵龙. 综合品位指标在多金属矿勘查中的应用−以广西南丹黑水沟−大树脚矿段锌多金属矿为例[J]. 矿产勘查, 2022, 13(1): 95−99.

    Google Scholar

    WAN G L. Application of comprehensive grade indicators in the exploration of polymetallic mines − taking the zinc polymetallic mine in the Heishuigou Dashujiao section of Nandan, Guangxi as an example[J]. Mineral Exploration, 2022, 13(1): 95−99.

    Google Scholar

    [13] 黄炳香, 赵兴龙, 韩晓克, 等. 煤系共伴生矿产协同开发[J]. 采矿与安全工程学报, 2024, 41(1): 1−14.

    Google Scholar

    HUANG B X, ZHAO X L, HAN X K, et al. Collaborative development of coal bearing co associated minerals[J]. Journal of Mining and Safety Engineering, 2024, 41(1): 1−14.

    Google Scholar

    [14] 李静. 蔡家隈子镍钴多金属矿最低综合工业品位制定方法[J]. 有色矿冶, 2023, 39(5): 62−63+66. doi: 10.3969/j.issn.1007-967X.2023.05.017

    CrossRef Google Scholar

    LI J. Determination method of the minimum comprehensive industrial grade of the Caijiakuizi Nickel−cobalt polymetallic ore[J]. Nonferrous Metals and Metallurgy, 2023, 39(5): 62−63+66. doi: 10.3969/j.issn.1007-967X.2023.05.017

    CrossRef Google Scholar

    [15] 高任, 李旭辉, 叶少贞, 等. 综合勘查系统: 一种适合铜−银共生矿床的勘查理论方法[J]. 中国矿业, 2021, 30(2): 25−30.

    Google Scholar

    GAO R, LI X H, YE S Z, et al. Comprehensive exploration system: A theoretical method for exploration of copper silver symbiotic deposits [J]. China Mining, 2021, 30(2): 25−30.

    Google Scholar

    [16] OSANLOO M, ATAEI M. Using equivalent grade factors to find the optimum cut−off grades of multiple metal deposits[J]. Minerals Engineering, 2003, 16(8): 771−776. doi: 10.1016/S0892-6875(03)00163-8

    CrossRef Google Scholar

    [17] ATAEI M, OSANLOO M. Using a combination of genetic algorithm and the grid search method to determine optimum cutoff grades of multiple metal deposits[J]. International Journal of Surface Mining, Reclamation and Environment, 2004, 18(1): 60−78. doi: 10.1076/ijsm.18.1.60.23543

    CrossRef Google Scholar

    [18] AHMADI M R, SHAHABI R S. Cutoff grade optimization in open pit mines using genetic algorithm[J]. Resources Policy, 2018, 55: 184−191. doi: 10.1016/j.resourpol.2017.11.016

    CrossRef Google Scholar

    [19] CETIN E. Assessment of costs in cut−off grades optimization by using grid search method[J]. Gospodarka Surowcami Mineralnymi, 2018, 34(2): 67−80.

    Google Scholar

    [20] CETIN E, DALGIC A. The optimization of cut−off grades by means of memetic algorithms[J]. Gospodarka Surowcami Mineralnymi−Mineral Resources Management, 2022, 38(1): 107−122.

    Google Scholar

    [21] ATASHPAZ−GARGARI E, LUCAS C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition[C]//2007 Ieee congress on evolutionary computation, 2007: 4661−4667.

    Google Scholar

    [22] 李斌, 黄起彬. 面向资源约束项目调度的二阶段帝国竞争算法[J]. 计算机科学与探索, 2023, 17(11): 2620−2639. doi: 10.3778/j.issn.1673-9418.2208055

    CrossRef Google Scholar

    LI B, HUANG Q B. Two−stage imperial competition algorithm for resource−constrained project scheduling[J]. Computer Science and Exploration, 2023, 17(11): 2620−2639. doi: 10.3778/j.issn.1673-9418.2208055

    CrossRef Google Scholar

    [23] 王庆丰, 马少飞, 刘强, 等. 基于帝国竞争算法的主动配电网多目标优化研究[J]. 智慧电力, 2018, 46(8): 74−78. doi: 10.3969/j.issn.1673-7598.2018.08.012

    CrossRef Google Scholar

    WANG Q F, MA S F, LIU Q, et al. Research on multi−objective optimization of active distribution networks based on imperial competition algorithm[J]. Smart Power, 2018, 46(8): 74−78. doi: 10.3969/j.issn.1673-7598.2018.08.012

    CrossRef Google Scholar

    [24] 全国自然资源与国土空间规划标准化技术委员会. 矿产资源综合利用技术指标及其计算方法: GB/T 42249—2022[S].

    Google Scholar

    [25] ASAD M W A, QURESHI M A, JANG H. A review of cut−off grade policy models for open pit mining operations[J]. Resources Policy, 2016, 49: 142−152. doi: 10.1016/j.resourpol.2016.05.005

    CrossRef Google Scholar

    [26] 李裕伟. 边界品位确定方法及其在矿产勘查中的应用[J]. 中国国土资源经济, 2022, 35(3): 4−15.

    Google Scholar

    LI Y W. Method for determining cut−off grade and its application in mineral exploration[J]. China Land and Resources Economy, 2022, 35(3): 4−15.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(71) PDF downloads(26) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint