Citation: | LI Chao, ZHOU Hao, GONG Li, ZENG Jianwu. Application Study of Nano−ceramic Balls in the Vertical Ball Mill of Pulang Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 23-27. doi: 10.13779/j.cnki.issn1001-0076.2024.08.018 |
The Pulang Copper Mine uses vertical ball mills to regrind coarse concentrates, which encounters problems such as high loss of roundness and overloading of steel balls, poor grinding fineness, and short service life of liners. To improve the grinding efficiency of this vertical ball mill, the grinding effects of nanoceramic balls and steel balls were compared in this investigation. The results show that the grinding performance of the vertical mill is significantly improved after adopting nanoceramic balls as the grinding media, with the content of −300 mesh particle size in the ground product increasing by nearly 8 percentage points. Moreover, the grinding costs are significantly reduced after adopting nanoceramic balls as the grinding media. Specifically, the consumption of grinding media is decreased by 82.32%, the cost of liner usage is reduced by 63.83%, and energy consumption is reduced by 25.71%. Therefore, replacing steel balls with nanoceramic balls could effectively enhance the grinding efficiency in the Pulang Copper Mine Concentrator.
[1] | 段希祥, 肖庆飞. 碎矿与磨矿[M]. 第3版. 北京: 冶金工业出版社, 2012. DUAN X X, XIAO Q F. Ore crushing and grinding[M]. 3rd edition. Beijing: Metallurgical Industry Press, 2012. |
[2] | 赖春山. 降低碎矿粒度与磨矿节能降耗[J]. 有色金属(选矿部分), 2005(1): 31−32. LAI C S. Reducing ore crushing particle size for energy conservation and consumption reduction in grinding[J]. Nonferrous Metals (Mineral Processing Section), 2005(1): 31−32. |
[3] | 李同清. 球磨机矿磨介质动力学行为研究[D]. 徐州: 中国矿业大学, 2018. LI T Q. Study on the dynamic behavior of ore grinding media in ball mills [D]. Xuzhou: China University of Mining and Technology, 2018. |
[4] | ROSENKRANZ S, BREITUNG F S, KWADE A. Experimental investigations and modeling of theball motion in planetary ball mills[J]. Powder Technology, 2011, 212(1): 224−230. doi: 10.1016/j.powtec.2011.05.021 |
[5] | FURSTENAU D W, ABOUZEID A Z W. The energy efficiency of ball milling in comminution[J]. International Journal of Mineral Processing, 2002, 67(1/2/3/4): 161−185. doi: 10.1016/S0301-7516(02)00039-X |
[6] | 王宏勋. 降低破碎与磨矿能量消耗的途径[J]. 金属矿山, 1983(8): 9−33. WANG H X. Approaches to reducing energy consumption in crushing and grinding processes[J]. Metal Mines, 1983(8): 29−33. |
[7] | 张国旺, 黄圣生. 高效超细搅拌磨机的设计和应用[J]. 矿冶工程, 2002, 22(3): 45−47. doi: 10.3969/j.issn.0253-6099.2002.03.013 ZHANG G W, HUANG S S. Design and application of an efficient ultra−fine stirred Mill[J]. Mining and Metallurgical Engineering, 2002, 22(3): 45−47. doi: 10.3969/j.issn.0253-6099.2002.03.013 |
[8] | 吴任欧. 立式搅拌磨机的研究与应用进展[J]. 有色金属(选矿部分), 2011(10): 79−81. WU R O. Research and application progress of vertical stirred mills[J]. Nonferrous Metals (Mineral Processing Section), 2011(10): 79−81. |
[9] | 凌永发, 段希祥. 细磨介质形状的选择及应用研究[J]. 有色金属(选矿部分), 2001(6): 41−44+35. LING Y F, DUAN X X. Selection and application research of fine grinding media shapes[J]. Nonferrous Metals(Mineral Processing Section), 2001(6): 41−44+35. |
[10] | 杨有洪, 徐胜旗, 申滔. 新型磨矿介质在立式螺旋搅拌磨机的应用实践与改进[J]. 机械加工与制造, 2019(8): 27−29. YANG Y H, XU S Q, SHEN T. Application practice and improvement of new grinding media in vertical spiral stirred mills[J]. Mechanical Processing and Manufacturing, 2019(8): 27−29. |
[11] | 姚伟, 白晓卿, 侯四海. 纳米陶瓷球在VTM−300立磨机中的应用试验研究[J]. 中国钼业, 2020(12): 46−49. YAO W, BAI X Q, HOU S H. Experimental study on the application of nano−ceramic balls in VTM−300 vertical mill[J]. China Molybdenum Industry, 2020(12): 46−49. |
[12] | 廖宁宁. 纳米陶瓷球在立式磨机中的磨矿性能研究[D]. 赣州: 江西理工大学, 2019: 47−58. LIAO N N. Study on the grinding performance of nano−ceramic balls in vertical mills[D]. Ganzhou: Jiangxi University of Science and Technology, 2019: 47−58. |
[13] | 周洪林. 纳米陶瓷球在金属矿细磨中的应用及前景[J]. 现代矿业, 2022, 639(7): 192−196+200. doi: 10.3969/j.issn.1674-6082.2022.07.048 ZHOU H L. Application and prospect of nano−ceramic balls in fine grinding of metal ores[J]. Modern Mining, 2022, 639(7): 192−196+200. doi: 10.3969/j.issn.1674-6082.2022.07.048 |
[14] | 章恒兴, 郑萍, 凌佩红, 等. 纳米陶瓷球的耐磨性能研究[J]. 中国钨业, 2022, 37(5): 113−17. ZHANG H X, ZHENG P, LING P H, et al. Research on the wear resistance of nano−ceramic balls[J]. China Tcmgsten Industry, 2022, 37(5): 113−17. |
[15] | 吴志强, 方鑫, 童佳琪, 等. 纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2019, 10(5): 91−96. WU Z Q, FANG X, TONG J Q, et al. Characteristics of grinding energy consumption and particle size distribution using nano−ceramic balls as fine grinding media[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91−96. |
Ball wear rate and deformation changes in the vertical mill
Comparison for the shapes of steel balls and ceramic balls after one cycle of use (Left—steel balls, Right—ceramic balls)