Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 1
Article Contents

YAN Yuen, WANG Yubin, WU Zhongyi, LEI Dashi, PENG Xiangyu. Effect of Sodium Sulfate on Surface Oxidation−dissolution Behavior of Fine−grained Molybdenite and Its Mechanism[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 45-52. doi: 10.13779/j.cnki.issn1001-0076.2024.08.027
Citation: YAN Yuen, WANG Yubin, WU Zhongyi, LEI Dashi, PENG Xiangyu. Effect of Sodium Sulfate on Surface Oxidation−dissolution Behavior of Fine−grained Molybdenite and Its Mechanism[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 45-52. doi: 10.13779/j.cnki.issn1001-0076.2024.08.027

Effect of Sodium Sulfate on Surface Oxidation−dissolution Behavior of Fine−grained Molybdenite and Its Mechanism

More Information
  • The excessive oxidation on the surface of micro−fine molybdenite and the dissolution behavior of the surface oxidation products are not favorable for molybdenite flotation, for this reason, sodium sulfate was used to reduce the degree of surface oxidation of fine−grained molybdenite and inhibit the dissolution of surface oxidation products in order to improve the flotation efficiency of molybdenite. The results indicated that the appropriate amount of sodium sulfate could reduce relative content of Mo−O bonds on the surface of micro−fine molybdenite, which had a certain regulatory effect on the oxidation reaction of micro−fine molybdenite and the dissolution process of oxidation products. Sodium sulfate at 0.08 mol/L reduced the sulfate ion concentration in the slurry by 68.25% and the dissolved oxygen concentration by 25.81%, and reduced the crystalline spacing of the micro−fine molybdenite (100) crystal faces, while increasing the crystallinity. Secondly, the sulfate ions ionized by sodium sulfate in solution produce a common ion effect on the dissolution reaction of sulfur oxidation products on the surface of molybdenite, which hindered the dissolution of oxidation products and improved the uniformity and floatability of fine−grained molybdenite surface properties. The study has certain guiding significance for the regulation of the oxidation−dissolution process of micro−fine molybdenite and its flotation effects improvement.

  • 加载中
  • [1] 林清泉, 吴启明, 戴智飞, 等. 微细粒辉钼矿浮选机理研究[J]. 矿冶工程, 2021, 41(3): 37−41. doi: 10.3969/j.issn.0253-6099.2021.03.009

    CrossRef Google Scholar

    LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37−41. doi: 10.3969/j.issn.0253-6099.2021.03.009

    CrossRef Google Scholar

    [2] 沈传刚, 肖庆飞, 宋念平, 等. 磨矿细度对辉钼矿浮选的影响[J]. 有色金属(选矿部分), 2017(1): 51−54+68.

    Google Scholar

    SHEN C G, XIAO Q F, SONG N P, et al. Effect of grinding fineness on molybdenite flotation[J]. Nonferrous Metals (Mineral Processing Section), 2017(1): 51−54+68.

    Google Scholar

    [3] 林清泉, 詹信顺, 张红华, 等. 辉钼矿和黄铁矿的晶体结构与表面性质研究[J]. 矿冶工程, 2019, 39(3): 40−45. doi: 10.3969/j.issn.0253-6099.2019.03.010

    CrossRef Google Scholar

    LIN Q Q, ZHAN X S, ZHANG H H, et al. Crystal structures and surface properties of molybdenite and pyrite[J]. Mining and Metallurgical Engineering, 2019, 39(3): 40−45. doi: 10.3969/j.issn.0253-6099.2019.03.010

    CrossRef Google Scholar

    [4] 任强. 微细粒辉钼矿的浮选动力学研究[J]. 中国资源综合利用, 2019, 37(2): 33−35. doi: 10.3969/j.issn.1008-9500.2019.02.009

    CrossRef Google Scholar

    REN Q. Study on flotation kinetics of fine−grained molybdenite[J]. China Resource Comprehensive Utilization, 2019, 37(2): 33−35. doi: 10.3969/j.issn.1008-9500.2019.02.009

    CrossRef Google Scholar

    [5] 杨丙桥, 黄鹏亮, 张汉泉, 等. 微细粒辉钼矿疏水聚团及聚团浮选研究[J]. 金属矿山, 2018(10): 86−91.

    Google Scholar

    YANG B Q, HUANG P L, ZHANG H Q, et al. Study on the hydrophobic agglomeration and floc−flotation of molybdenite fines[J]. Metal Mine, 2018(10): 86−91.

    Google Scholar

    [6] NOWAK P, LAAJALEHTO K. Oxidation of galena surface−an XPS study of the formation of sulfoxy species[J]. Applied Surface Science, 2000, 157(3): 101−111. doi: 10.1016/S0169-4332(99)00575-9

    CrossRef Google Scholar

    [7] HAMPTON M A, PLACKOWSKI C, NGUYEN A V. Physical and chemical analysis of elemental sulfur formation during galena surface oxidation[J]. Langmuir, 2011, 27(7): 4190−4201. doi: 10.1021/la104755a

    CrossRef Google Scholar

    [8] 荀婧雯, 王宇斌, 马晓晓, 等. 浮选过程中辉钼矿的氧化溶解特性[J]. 矿产保护与利用, 2020, 40(6): 95−101.

    Google Scholar

    XUN J W, WANG Y B, MA X X, et al. Oxidation−dissolution characteristics of molybdenite during the flotation process[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 95−101.

    Google Scholar

    [9] 牛晓鹏. 方铅矿、黄铜矿和黄铁矿表面氧化与可浮性研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.

    Google Scholar

    NIU X P. Correlation of surface oxidation of galena, chalcopyrite and pyrite with their floatability[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2019.

    Google Scholar

    [10] 陈志友, 苏小琼, 肖洪旭, 等. 云南某微细粒辉钼矿工艺矿物学与浮选回收技术研究[J]. 矿物学报, 2021, 41(3): 287−293.

    Google Scholar

    CHEN Z Y, SU X Q, XIAO H X, et al. A study on process mineralogy and flotation recovery technology of a kind of fine molybdenite ore in Yunnan Province, China[J]. Acta Mineralogica Sinica, 2021, 41(3): 287−293.

    Google Scholar

    [11] 李慧. 不同粒级辉钼矿的可浮性及其影响因素和改善措施研究[D]. 西安: 西安建筑科技大学, 2019.

    Google Scholar

    LI H. Study on floatability of molybdenite with different grain size and its influencing factors and improvement measures[D]. Xi'an: Xi'an University of Architecture and Technology, 2019.

    Google Scholar

    [12] 伊向艺, 叶金亮, 李沁, 等. 同离子效应对不同酸液与碳酸盐岩反应的影响[J]. 油田化学, 2014, 31(1): 25−28.

    Google Scholar

    YI X Y, YE J L, LI Q, et al. Influence of common ion effect on the reaction between different acids and carbonate rock[J]. Oilfield Chemistry, 2014, 31(1): 25−28.

    Google Scholar

    [13] 曲昌海, 汤韧, 刘宏, 等. 同离子效应对盐酸普萘洛尔渗透泵片释药速率的影响[J]. 中国药师, 2006, 9(2): 99−101. doi: 10.3969/j.issn.1008-049X.2006.02.001

    CrossRef Google Scholar

    QU C H, TANG R, LIU H, et al. Influence of homoion effect in drug release of propranolol hydrochloride osmotic pump tablets[J]. China Pharmacist, 2006, 9(2): 99−101. doi: 10.3969/j.issn.1008-049X.2006.02.001

    CrossRef Google Scholar

    [14] 王宇斌, 文堪, 王森, 等. 同离子效应对半水硫酸钙形貌的调控机理[J]. 高校化学工程学报, 2018, 32(6): 1444−1449. doi: 10.3969/j.issn.1003-9015.2018.06.027

    CrossRef Google Scholar

    WANG Y B, WEN K, WANG S, et al. Regulation mechanism of common ion effect on the morphology of calcium sulphate hemihydrate[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1444−1449. doi: 10.3969/j.issn.1003-9015.2018.06.027

    CrossRef Google Scholar

    [15] LUCAY F, CISTERNAS L A, GÀLVEZ E D, et al. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation[J]. Mining, Metallurgy & Exploration, 2015, 32(4): 203−208.

    Google Scholar

    [16] 荀婧雯, 王宇斌, 汪潇, 等. Cu2+对磁化蒸馏水改善辉钼矿浮选效果的影响[J]. 过程工程学报, 2020, 20(3): 332−337. doi: 10.12034/j.issn.1009-606X.219198

    CrossRef Google Scholar

    XUN J W, WANG Y B, WANG X, et al. Effect of Cu2+ on improvement of molybdenite floatability in magnetized distilled water[J]. The Chinese Journal of Process Engineering, 2020, 20(3): 332−337. doi: 10.12034/j.issn.1009-606X.219198

    CrossRef Google Scholar

    [17] 宇文超, 刘秉国, 张利波, 等. 基于多重扫描速率法的辉钼矿氧化焙烧动力学参数分析[J]. 化学反应工程与工艺, 2018, 34(4): 359−364.

    Google Scholar

    YU W C, LIU B G, ZHANG L B, et al. Analysis of kinetic parameters of molybdenite oxidation roasting based on the multiple scanning rate method[J]. Chemical Reaction Engineering and Technology, 2018, 34(4): 359−364.

    Google Scholar

    [18] 马双忱, 范紫瑄, 万忠诚, 等. 高盐水条件下亚硫酸盐氧化特性实验研究[J]. 化工学报, 2019, 70(5): 1964−1972. doi: 10.11949/j.issn.0438-1157.20181237

    CrossRef Google Scholar

    MA S C, FAN Z X, WAN Z C, et al. Experimental study on oxidation characteristics of sulfite under high salt water condition[J]. CIESC Journal, 2019, 70(5): 1964−1972. doi: 10.11949/j.issn.0438-1157.20181237

    CrossRef Google Scholar

    [19] SINCHE−GONZALEZ M, FORNASIERO D. Understanding the effect of sulphate in mining−process water on sulphide flotation[J]. Minerals Engineering, 2021, 165: 106865. doi: 10.1016/j.mineng.2021.106865

    CrossRef Google Scholar

    [20] 林清泉, 顾帼华, 陈雄, 等. 微细粒辉钼矿的浮选动力学研究[J]. 中南大学学报(自然科学版), 2018, 49(7): 1573−1581.

    Google Scholar

    LIN Q Q, GU G H, CHEN X, et al. Flotation kinetics of molybdenite fines[J]. Journal of Central South University (Science and Technology), 2018, 49(7): 1573−1581.

    Google Scholar

    [21] LI Y B, LARTEY C, SONG S X, et al. The fundamental roles of monovalent and divalent cations with sulfates on molybdenite flotation in the absence of flotation reagents[J]. Rsc Advances, 2018, 8(41): 23364−23371. doi: 10.1039/C8RA02690D

    CrossRef Google Scholar

    [22] WANG D Z. Flotation reagents: Applied surface chemistry on minerals flotation and energy resources beneficiation: Volume 1: Functional principle[M]. Metallurgical Industry Press, 2016.

    Google Scholar

    [23] BERTRAND P A. Surface−phonon dispersion of MoS2[J]. Physical Review B, 1991, 44: 5745−5749. doi: 10.1103/PhysRevB.44.5745

    CrossRef Google Scholar

    [24] LEE C, YAN H, BRUS L E, et al. Anomalous lattice vibrations of single−and few−layer MoS2[J]. Acs Nano, 2010, 4(5): 2695−2700. doi: 10.1021/nn1003937

    CrossRef Google Scholar

    [25] 李慧, 何廷树, 王宇斌, 等. 不同粒级辉钼矿的XRD和SEM及其可浮性差异研究[J]. 光谱学与光谱分析, 2018, 38(11): 3588−3592.

    Google Scholar

    LI H, HE T S, WANG Y B, et al. XRD and SEM analyses of molybdenite with different particle sizes and its floatability difference[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3588−3592.

    Google Scholar

    [26] CASTRO S, LOPEZ−VALDIVIESO A, LASKOWSKI J S. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48−58. doi: 10.1016/j.minpro.2016.01.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(72) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint