Citation: | XIAO Qingfei, SUN Boyuan, JIN Saizhen, WU Yukai, WANG Mengtao. Grinding Medium Optimization Based on Grinding Kinetics and Discrete Element Analysis[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 28-38. doi: 10.13779/j.cnki.issn1001-0076.2024.08.019 |
In this study, the effects of steel balls and steel cylpebs as the grinding media on the crushing behavior and energy utilization of multi−grain ores were investigated using grinding dynamics and discrete element method (DEM) simulation, and industrial experimental research was carried out based on the results. The results of grinding kinetics show that the effect of steel balls on the crushing rate of the coarse grain fraction was better than that of steel cylpebs. The content of +0.15 mm in the grinding product is reduced by 0.98% and −0.074 mm increased by 5.66% in the case of steel ball compared with that of steel cylpebs as the grinding medium. DEM analysis showed that the motion state of steel balls was more active than that of steel cylpebs. The percentage of energy used for ore crushing using steel balls and steel cylpebs as the grinding medium was 65.41% and 61.29%, respectively, with the former being 4.12% higher than the latter so that the effective energy utilization of steel balls for crushing the ore is higher. Based on the above results, after using steel balls as grinding media in the Dahongshan Iron Mine, the overflow −0.074 mm content of the cyclone increased from 74.00% to 81.71%, an increase of 7.71%, the unit steel consumption decreased by 9.52%, from 0.63 kg/t to 0.57 kg/t, and the unit power consumption decreased by 11.61%, from 11.46 kW·h/t to 10.13 kW·h/t. This study verified the validity of the steel ball scheme through grinding dynamics and discrete element analysis experiments and verified its accuracy through industrial tests.
[1] | 段希祥, 肖庆飞. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012. DUAN X X, XIAO Q F. Crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012. |
[2] | 李雨晴, 谢峰, 徐凤平, 等. 精确化磨矿对钨矿粒度分布特性的影响[J]. 有色金属(选矿部分), 2024(3): 76−82. LI Y Q, XIE F, XU F P, et al. Effect of precision grinding on the particle size distribution characteristics of the tungsten ore[J]. Nonferrous Metals (Mineral Processing Section), 2024(3): 76−82. |
[3] | 母福生. 破碎及磨矿技术在国内外的技术发展和行业展望(一)[J]. 矿山机械, 2011, 39(11): 58−65. MU F S. Technical development and prospect of crushing and grinding technology at home and abroad (Ⅰ)[J]. Mining & Processing Equipment, 2011, 39(11): 58−65. |
[4] | NAPIER−MUNN T. Is progress in energy−efficient comminution doomed?[J]. Minerals Engineering, 2015, 73: 1−6. doi: 10.1016/j.mineng.2014.06.009 |
[5] | 卢建坤. 基于离散单元法的大型球磨机介质运动分析及参数优化[D]. 洛阳: 河南科技大学, 2013. LU J K. Kinematical analysis & parameters optimization of large tumbling ball mill’ media based on the discrete element method[D]. Luoyang: Henan University of Science and Technology, 2013. |
[6] | 王彩霞, 肖庆飞, 段希祥. 特大型球磨机球荷工作参数优化研究[J]. 矿产综合利用, 2014(6): 45−48. doi: 10.3969/j.issn.1000-6532.2014.06.012 WANG C X, XIAO Q F, DUAN X X. Research on parameter optimization on excellent ball mill[J]. Multipurpose Utilization of Mineral Resources, 2014(6): 45−48. doi: 10.3969/j.issn.1000-6532.2014.06.012 |
[7] | 邓文, 王明飞, 常伟华. 云南某铅锌矿二段球磨机磨矿介质制度优化研究[J]. 云南冶金, 2022, 51(5): 56−60. DENG W, WANG M F, CHANG W H. Optimization of grinding media system of two−section ball mill in a lead−zinc mine in Yunnan[J]. Yunnan Metallurgy, 2022, 51(5): 56−60. |
[8] | 王彬, 任頔, 杜成, 等. 山西某铁矿厂一段球磨工艺指标优化研究[J]. 铜业工程, 2022(5): 26−30. WANG B, REN D, DU C, et al. Optimization study on technological index of primary ball milling of an Iron mine in Shanxi province[J]. Copper Engineering, 2022(5): 26−30. |
[9] | 何逵, 库建刚. 磨矿介质形状对石英砂粉碎参数的影响[J]. 中国粉体技术, 2019, 25(5): 29−32. HE K, KU J G. Grinding parameters of quartz sand with shape of medium[J]. China Power Science and Technology, 2019, 25 (5) : 29−32. |
[10] | ZHANG X, HAN Y, GAO P, et al. Effects of grinding media on grinding products and flotation performance of chalcopyrite[J]. Minerals Engineering, 2020, 145: 106070. doi: 10.1016/j.mineng.2019.106070 |
[11] | 王国彬, 蓝卓越, 肖庆飞, 等. 选择性磨矿的主要影响因素浅析[J]. 有色金属(选矿部分), 2021(4): 59−66+103. WANG G B, LAN Z Y, XIAO Q F, et al. Analysis on main influencing factors of selective grinding[J]. Nonferrous Metals(Mineral Processing Section), 2021(4): 59−66+103. |
[12] | 汪聪, 邓建, 肖庆飞, 等. 磨矿介质形状对铜硫浮选分离的影响[J]. 中国有色金属学报, 2024, 34(2): 573−585. doi: 10.11817/j.ysxb.1004.0609.2023-44307 WANG C, DENG J, XIAO Q F, et al. Effect of grinding media shape on flotation separation of chalcopyrite and pyrite[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(2): 573−585. doi: 10.11817/j.ysxb.1004.0609.2023-44307 |
[13] | 王旭东, 肖庆飞, 张谦, 等. 大坪选矿厂磨矿介质制度优化实验研究[J]. 黄金, 2019, 40(8): 53−56. doi: 10.11792/hj20190811 WANG X D, XIAO Q F, ZHANG Q, et al. Experimental study on the optimization of grinding media regime in Daping concentrator[J]. Gold, 2019, 40(8): 53−56. doi: 10.11792/hj20190811 |
[14] | CUHADAROGLU D, SAMANLI S, KIZGUT S. The effect of grinding media shape on the specific rate of breakage[J]. Particle & Particle Systems Characterization, 2008, 25(5/6): 465−473. |
[15] | SIMBA K P, MOYS M H. Effects of mixtures of grinding media of different shapes on milling kinetics[J]. Minerals Engineering, 2014, 61: 40−46. doi: 10.1016/j.mineng.2014.03.006 |
[16] | YU J, QIN Y, GAO P, et al. An innovative approach for determining the grinding media system of ball mill based on grinding kinetics and linear superposition principle[J]. Powder Technology, 2021, 378: 172−181. doi: 10.1016/j.powtec.2020.09.076 |
[17] | 李云啸, 肖庆飞, 国宏臣, 等. 基于离散元法的球磨机筒体衬板改型优化研究[J]. 矿产保护与利用, 2023, 43(4): 43−49. LI Y X, XIAO Q F, GUO H C, et al. Optimization of barrel liner modification of ball mill based on discrete element method[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 43−49. |
[18] | 段希祥. 球磨机钢球尺寸的理论计算研究[J]. 中国科学(A辑 数学 物理学 天文学 技术科学), 1989(8): 856−863. DUAN X X. Theoretical calculation research on the size of steel balls in ball mills[J]. Scientia Sinica (Mathematical Physics Astronomical Technology Science, Volume A), 1989(8): 856−863. |
[19] | GUOBIN W, QINGFEI X, QIANG Z, et al. An innovatory approach for determining grinding media system to optimize fraction compositions of grinding products based on grinding dynamics principle[J]. Powder Technology, 2024, 434: 119302. doi: 10.1016/j.powtec.2023.119302 |
Particle size characteristic curve (a—cyclone feeding; b—cyclone sedimentation; c—cyclone overflow; d—ball mill discharge)
Mill cylinder structure model
Crushing behavior of different size steel balls on iron ores with different particle sizes (a—Ф50 mm steel ball; b—Ф40 mm steel ball; c—Ф30 mm steel ball; d—Ф20 mm steel ball)
Effect of ore feeding size on specific crushing rate under different sizes of steel balls (a—Ф50 mm steel ball; b—Ф40 mm steel ball; c—Ф30 mm steel ball; d—Ф20 mm steel ball)
Crushing behavior of different size steel cylinder on iron ores with different particle sizes (a—D×L 45 mm×50 mm; b—D×L 35 mm×40 mm; c—D×L 30 mm×35 mm; d—D×L 20 mm×25 mm)
Effect of ore feeding size on specific crushing rate under different sizes of steel cylinder (a—D×L 45 mm×50 mm; b—D×L 35 mm×40 mm; c—D×L 30 mm×35 mm; d—D×L 20 mm×25 mm)
Particle motion status under different media schemes (a—steel ball; b—steel cylpebs)
Particle collision energy spectra for different media schemes
Steel ball consumption during industrial testing
Steel ball consumption during industrial testing