Citation: | LI Chao, LUO Ximei, QI Linping, SONG Zhenguo, WANG Yunfan. Two−phase and Three−phase Froth Performance in Sphalerite Flotation Using Sulphidizing−amination Method[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 74-80. doi: 10.13779/j.cnki.issn1001-0076.2024.08.006 |
The sulphidizing−amination method is one of the main beneficiation methods for sphalerite ore, which has good indexes in industrial production, but there is a problem that the flotation foam is sticky and difficult to defoam. The performance of two−phase and three−phase foams in sphalerite flotation using sulphidizing−amination method, and the effects of sodium sulfide dosage, dodecylamine dosage, mineral content, mineral particle size, mineral type, etc. on foam stability were studied. The pulp viscosity of different mineral contents was investigated at last. The results show that in the sulphidizing−amination flotation of sphalerite, sodium sulfide can improve the stability of two−phase and three−phase foam. Mineral particles of different sizes have different effects on foam stability. Adding sphalerite and quartz particles with a particle size of −74+37 μm can reduce foam stability, while adding sphalerite and quartz particles with a particle size of −37 μm can improve foam stability. The −18 μm quartz particles have a particularly significant effect. When dodecylamine co−existed with micro−fine quartz, the flotation foam was particularly stable. The half−life of the three−phase foam after the addition of quartz particles is higher than that of sphalerite, because the viscosity of quartz pulp is higher than that of sphalerite, so the Marangoni effect of the foam film is enhanced, resulting in a slower drainage rate, a slower thinning rate of the foam film, and stronger foam stability.
[1] | 田尤, 刘廷, 曾祥婷, 等. 我国锌资源产业形势及对策建议[J]. 现代矿业, 2015, 31(4): 5−9. doi: 10.3969/j.issn.1674-6082.2015.04.002 TIAN Y, LIU T, ZENG X T, et al. Situation and suggestion of China's zinc resources industry[J]. Modern Mining, 2015, 31(4): 5−9. doi: 10.3969/j.issn.1674-6082.2015.04.002 |
[2] | 江少卿, 徐毅, 孙尚信, 等. 全球铅锌矿资源分布[J]. 地质与资源, 2020, 29(3): 224−232. doi: 10.3969/j.issn.1671-1947.2020.03.003 JIANG S Q, XU Y, SUN S X, et al. Global distribution of lead−zinc resources[J]. Geology and Resources, 2020, 29(3): 224−232. doi: 10.3969/j.issn.1671-1947.2020.03.003 |
[3] | 陈琳璋. 石英与长石的浮选分离研究D]. 株洲:湖南工业大学, 2014. CHEN L Z. Research on flotation separation of quartz and feldspar[D]. Zhuzhou: Hu'nan University of Technology, 2014. |
[4] | 李想, 林诗鸿, 陈佳, 等. 氧化锌矿石浮选研究进展[J]. 金属矿山, 2018(10): 98−103. LI X, LIN S H, CHEN J, et al. Research status of zinc oxide ore flotation[J]. Metal Mine, 2018(10): 98−103. |
[5] | 宋龑. 氧化锌矿浮选药剂的研究进展[J]. 湖南有色金属, 2020, 36(2): 29−32+47. SONG Y. The research progress of flotation reagents for zinc oxide ore[J]. Hunan Nonferrous Metals, 2020, 36(2): 29−32+47. |
[6] | 李智伟, 廖润鹏, 张谦, 等. 云南兰坪氧化铅锌矿工艺矿物学研究[J]. 有色金属工程, 2023(12): 65−77+162. doi: 10.3969/j.issn.2095-1744.2023.12.009 LI Z W, LIAO R P, ZHANG Q, et al. Process Mineralogical research on the oxide−lead−zinc ore in Lanping Yunnan province[J]. Nonferrous Metals, 2023(12): 65−77+162. doi: 10.3969/j.issn.2095-1744.2023.12.009 |
[7] | 何翔. 四川某高氧化率锌矿石选矿实验研究[J]. 现代矿业, 2023(10): 251−253. doi: 10.3969/j.issn.1674-6082.2023.10.061 HE X. Experimental study on beneficiation of a high oxidation rate zinc ore in Sichuan[J]. Modern Mining, 2023(10): 251−253. doi: 10.3969/j.issn.1674-6082.2023.10.061 |
[8] | 冯程, 祁忠旭, 孙大勇, 等. 氧化锌矿选矿技术现状与进展[J]. 矿业研究与开发, 2019(9): 105−109. FENG C, QI Z X, SUN D Y, et al. Current status and overview of zinc oxide ore beneficiation technology[J]. Mining Research and Development, 2019(9): 105−109. |
[9] | 曾鹏, 谢海云, 晋艳玲, 等. 典型铜铅锌氧化矿的强化硫化浮选研究进展[J]. 矿冶, 2022, 31(2): 22−28. doi: 10.3969/j.issn.1005-7854.2022.02.004 ZENG P, XIE H Y, JIN Y L, et al. Research progress of enhanced sulfide flotation for typical copper−lead−zinc oxide ores[J]. Mining and Metallurgy, 2022, 31(2): 22−28. doi: 10.3969/j.issn.1005-7854.2022.02.004 |
[10] | IRANNAJAD M, EJTEMAEI M, GHARABAGHI M. The effect of reagents on selective flotation of smithsonite−calcite−quartz[J]. Minerals Engineering, 2009, 22(9/10): 766−771. doi: 10.1016/j.mineng.2009.01.012 |
[11] | 李来顺. 硫化—胺法浮选菱锌矿的理论与工艺研究[D]. 长沙: 中南大学, 2013. LI L S. Research on theory and technology of sulfide−amine flotation of smithsonite[D]. Changsha: Central South University, 2013. |
[12] | 王宏菊, 刘全军, 皇甫明柱, 等. 难选氧化锌矿浮选过程中脱泥作业的生产实践[J]. 有色金属 (选矿部分), 2009(5): 11−13. WANG H J, LIU Q J, HUANG P M Z, et al. Producted practice of desliming in the floatation of refractory oxidized zinc ore[J]. Nonferrous Metals(Mineral Processing Section), 2009(5): 11−13. |
[13] | 靳晨曦, 马子龙, 曹亦俊, 等. 极低品位泥质难选氧化锌矿浮选实验研究[J]. 矿产综合利用, 2017(1): 70−75. JIN C X, MA Z L, CAO Y J, et al. Flotation study on separating the extremely low−grade and argillaceous refractory oxide zinc[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 70−75. |
[14] | 李明晓, 刘殿文, 张文彬. 矿泥对某氧化锌矿石浮选指标的影响[J]. 昆明理工大学学报(理工版), 2010(5): 7−9. LI M X, LIU D W, ZHANG W B. Effect of slime on oxided zinc ore flotation[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2010(5): 7−9. |
[15] | 杨俊龙. 兰坪低品位高氧化率氧化铅锌矿的综合回收利用[D]. 昆明: 昆明理工大学, 2013. YANG J L. Comprehensive recovery and utilization of lead−zinc oxide with low grade and high oxidation rate in Lanping[D]. Kunming: Kunming University of Science and Technology, 2013. |
[16] | 郭姚. 新型分散剂强化含泥菱锌矿浮选行为的研究[D]. 赣州: 江西理工大学, 2022. GUO Y. Research on flotation behavior of mud−bearing smithsonite enhanced by new dispersant[D]. Ganzhou: Jiangxi University of Science and Technology, 2022. |
[17] | 付智楷, 郭姚, 任嗣利. 分散剂增强菱锌矿与细粒绿泥石混合矿浮选分离的作用及机理[J]. 有色金属科学与工程, 2023, 14(4): 553−560. FU Z K, GUO Y, REN S L. Effect and mechanism of dispersant−enhanced flotation separation of smithsonite and fine chlorite mixtures[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 553−560. |
[18] | 张祥峰, 孙伟. 阴阳离子混合捕收剂对异极矿的浮选作用及机理[J]. 中国有色金属学报, 2014, 24(2): 499−505. doi: 10.1016/S1003-6326(14)63088-0 ZHANG X F, SUN W. Flotation behaviour and mechanism of hemimorphite in presence of mixed(cationic/anionic) collectors[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 499−505. doi: 10.1016/S1003-6326(14)63088-0 |
[19] | 宋水祥, 罗溪梅, 马鸣泽, 等. 泡沫稳定性研究进展[J]. 矿冶, 2019, 28(1): 30−34. SONG S X, LUO X M, MA M Z, et al. Research progress on foam stability[J]. Mining and Metallurgy, 2019, 28(1): 30−34. |
[20] | 王琦, 习海玲, 左言军. 泡沫性能评价方法及稳定性影响因素综述[J]. 化学工业与工程技术, 2007, 28(2): 25−30. WANG Q, XI H L, ZUO Y J. Review on measurement techniques of performance and influence factors of stability for foam[J]. Journal of Chemical Industry & Engineering, 2007, 28(2): 25−30. |
[21] | 徐振洪, 朱建华, 张荣曾. 浮选起泡剂泡沫稳定性的评价方法研究[J]. 化工学报, 1999, 50(3): 399−403. XU Z H, ZHU J H, ZHANG R Z. Study on evaluation method of flotation frother's froth stability[J]. CIESC Journal, 1999, 50(3): 399−403. |
[22] | HASHEN M M, SCHCHTER R S. Foaming agent [P]: US, 4524002.1985−07−18. |
[23] | 赵国玺, 表面活性剂作用原理[M]. 北京: 中国轻工业出版社, 2003. ZHAO G X. Action principle of surfactant[M]. Beijing: China Light Industry Press, 2003. |
[24] | LOSCH D. Evaluation of a steady−state test of foam stability[J]. Philosophical Magazine, 2011, 91(4): 537−552. doi: 10.1080/14786435.2010.526646 |
[25] | 陈贻建, 张志庆, 苑世领, 等. 电导率法研究煤油/水乳状液的稳定性[J]. 山东大学学报(理学版), 2003, 38(4): 88−91. CHEN Y J, ZHANG Z Q, YUAN S L, et al. Study on the stability of kerosene−water emulsions with electrical condunctance[J]. Journal of Shandong University (Natural Science), 2003, 38(4): 88−91. |
[26] | 唐金库. 泡沫稳定性影响因素及性能评价技术综述[J]. 舰船防化, 2008(4): 1−8. TANG J K. Review on influence factors and measurement techniques of foam stability[J]. Chemical Defence on Slips, 2008(4): 1−8. |
[27] | 蓝强, 张妍, 冯希忠, 等. 用显微观测法评价泡沫钻井液的稳定性[J]. 钻井液与完井液, 2010, 27(4): 1−3. LAN Q, ZHANG Y, FENG X Z, et al. Stability evaluation on foam drilling fluid with micrographic methods[J]. Drilling Fluid & Completion Fluid, 2010, 27(4): 1−3. |
[28] | BEHERA M R, VARADE S R, GHOSH P, et al. Foaming in micellar solutions: Effects of surfactant, salt, and oil concentrations[J]. Industrial & Engineering Chemistry Research, 2014, 53(48): 18497−18507. |
[29] | BAZ−RODRIGUEZ S A, BOTELLO−ALVAREZ J E, ESTRADA−BALTAZAR A, et al. Effect of electrolytes in aqueous solutions on oxygen transfer in gas−liquid bubble columns[J]. Chem Eng Res Des, 2014, 92(11): 2352–2360. |
[30] | LI R J, LUO X M, WEN S M, et al. Three−phase froth stability in hematite flotation using DDA as a collector[J]. Minerals Engineering, 2023, 195: 108023. doi: 10.1016/j.mineng.2023.108023 |
[31] | 宋水祥. 胺类捕收剂对赤铁矿和石英浮选行为及其泡沫稳定性的影响[D].昆明:昆明理工大学, 2020. SONG S X. Effects of amine collectors on flotation behavior and foam stability of hematite and quartz[D]. Kunming: Kunming University of Science and Technology, 2020. |
[32] | 曲彦平, 杜鹤桂, 葛利俊. 表面黏度对泡沫稳定性的影响[J]. 沈阳工业大学学报, 2002(4): 283−286. doi: 10.3969/j.issn.1000-1646.2002.04.004 QU Y P, DU H G, GE L J. Effects of surface viscosity on foam stability[J]. Journal of Shenyang University of Technology, 2002(4): 283−286. doi: 10.3969/j.issn.1000-1646.2002.04.004 |
Foam performance test device
Effect of sodium sulfide dosage on half−life of two−phase foam in dodecylamine system
Effect of DDA dosage on the stability of two−phase foam
Effect of sodium sulfide dosage on half−life of three−phase foam after adding mineral particles
Effect of the dosage of dodecylamine on the half−life of three−phase foam after adding mineral particles
Effect of mineral content and particle size of smithsonite (a) and quartz (b) on the half−life of three−phase foam
Effect of mineral types of −74+37 μ m (a), -37+18 μm(b), and −18 μm(c) on foam half−life
Viscosity of pulp with different content of −18 μm sized smithsonite and quartz particles