Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

LUO Xuanxu, FENG Dongxia, TONG Xiong, XIONG Yunong, LUO Hengtong, GUO Minglong, DONG Meng. HydroFloat Separation Tests of Coarse Particles from Pulang Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2024.03.008
Citation: LUO Xuanxu, FENG Dongxia, TONG Xiong, XIONG Yunong, LUO Hengtong, GUO Minglong, DONG Meng. HydroFloat Separation Tests of Coarse Particles from Pulang Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2024.03.008

HydroFloat Separation Tests of Coarse Particles from Pulang Copper Mine

More Information
  • Porphyry copper mine from Yunnan is refractory both in grinding and separation. HydroFloat separation method was employed for coarse particle flotation based on the analysis of ore properties. The target minerals are clopyrite and molybdenite, and gangue minerals mainly quartz and sodium/calcium feldspar. After screening, bulk flotation was conducted with HydroFloat to cast away coarse gangue minerals, which subsequently reduce the energy consumption of further grinding. HydroFloat flotation induces air bubbles based on the traditional fluidized beds, where the suspended coarse particles rise along with bubbles under compound force field. With a tailing disposal rate of 48.80%, the grade of copper increased from 0.39% to 0.73% with a recovery of 95.84%, and the grade of molybdenum increased from 0.009% to 0.016% with a recovery of 92.05%.

  • 加载中
  • [1] 祁梦瑶, 彭伟军, 曹亦俊, 等. 硫化铜钼矿浮选分离抑制剂研究进展[J]. 金属矿山, 2023(8): 1−16.

    Google Scholar

    QI M Y, PENG W J, CAO Y J, et al. Research progress of flotation separation depressants for copper−molybdenum sulfide ore[J]. Metal Mine, 2023(8): 1−16.

    Google Scholar

    [2] 宋翔宇, 张红涛, 许来福, 等. 铜钼分离工艺研究现状与展望[J]. 有色金属(选矿部分), 2022(6): 92−101+114.

    Google Scholar

    SONG X Y, ZHANG H T, Xu L F, et al. Research status and prospect of Cu−Mo separation technology[J]. Nonferrous Metals(Mineral Processing Section), 2022(6): 92−101+114.

    Google Scholar

    [3] 江少卿. 全球铜矿资源分布[J]. 世界有色金属, 2018(2): 1−3.

    Google Scholar

    JIANG S Q. Distribution of copper resources in the world[J]. World Nonferrous Metals, 2018(2): 1−3.

    Google Scholar

    [4] ESKDALE A E, SMITH D J, ENE V V, et al. Economic by−products in copper porphyries: silver in the ascutita Cu−porphyry, Romania[J]. Ore Geology Reviews, 2022, 150: 105135. doi: 10.1016/j.oregeorev.2022.105135

    CrossRef Google Scholar

    [5] 刘鑫鑫, 章晓林, 许兴隆. 辉钼矿浮选中铜铅抑制剂及其抑制机理研究进展[J]. 化工矿物与加工, 2024, 53(6): 65-75.

    Google Scholar

    LIU X X, ZHANG X L, XU X L. Research progress of copper lead depressants and their inhibition mechanism in molybdenite flotation[J]. Industrial Minerals&Processing, 2024, 53(6): 65-75.

    Google Scholar

    [6] 杨孟月, 韩百岁, 宋宝旭, 等. 铜钼分离抑制剂研究进展[J]. 有色金属(选矿部分), 2023(2): 173−182.

    Google Scholar

    YANG M Y, HAN B S, SONG B X, et al. Research progress of depressants in separation of copper and molybdenum[J]. Nonferrous Metals(Mineral Processing Section), 2023(2): 173−182.

    Google Scholar

    [7] 杨晓峰, 刘瑶瑶. 铜钼矿浮选研究现状与进展[J]. 矿冶, 2021, 30(6): 42−47.

    Google Scholar

    YANG X F, LIU Y Y. Research status and progress of flotation of copper−molybdenum ore[J]. Mining and Metallurgy, 2021, 30(6): 42−47.

    Google Scholar

    [8] 聂世华. 某低品位铜钼矿石浮选试验研究[J]. 现代矿业, 2023, 39(6): 185−189.

    Google Scholar

    NIE S H. Flotation test research of a low−grade copper−molybdenum ore[J]. Modern Mining, 2023, 39(6): 185−189.

    Google Scholar

    [9] 梁泽跃, 彭远伦, 李崇德. 提高普朗铜矿一期斑岩型铜矿石选矿指标的试验研究[J]. 有色金属(选矿部分), 2020(3): 24−28.

    Google Scholar

    LIANG Z Y, PENG Y L, LI C D. Experimental study on improving beneficiation index of phase I porphyry copper ore in pulang copper mine[J]. Nonferrous Metals(Mineral Processing Section), 2020(3): 24−28.

    Google Scholar

    [10] CHELGANI S C, PARIAN M, PARAPARI P S, et al. A comparative study on the effects of dry and wetgrinding on mineral flotation separation−a review[J]. Journal of Materials Research and Technology, 2019, 8(5): 5004−5011. doi: 10.1016/j.jmrt.2019.07.053

    CrossRef Google Scholar

    [11] HUBBARD A. Colloidal science of flotation, Anh V. Nguyen and Hans Joachim Schulze, Marcel Dekker, New York, 2004, 850 pages[J]. Minerals Engineering, 2004, 17(6): 839. doi: 10.1016/j.mineng.2004.04.008

    CrossRef Google Scholar

    [12] 卢寿慈. 粗粒浮选理论、工艺及设备[J]. 国外金属矿选矿, 1982(10): 47−53.

    Google Scholar

    LU S C. Theory, technology and equipment of coarse flotation[J]. Metallic Ore Dressing Abroad, 1982(10): 47−53.

    Google Scholar

    [13] KOH P T L, SMITH L K. The effect of stirring speed and induction time on flotation(Article)[J]. Minerals Engineering, 2011, 24(5): 442−448. doi: 10.1016/j.mineng.2010.12.007

    CrossRef Google Scholar

    [14] JAMESON G J. Advances in fine and coarse particle flotation[J]. Canadian Metallurgical Quarterly, 2010, 49(4): 325−330. doi: 10.1179/cmq.2010.49.4.325

    CrossRef Google Scholar

    [15] KROMAH V, POWOE S B, KHOSRAVI R, et al. Coarse particle separation by fluidized−bed flotation: a comprehensive review[J]. Powder Technology, 2022, 409: 117831.

    Google Scholar

    [16] GEORGES−FILTEAU D, BOUCHARD J, DESBIENS A. A dynamic model of fluidized−bed flotation[J]. IFAC−Papers OnLine, 2019, 52(14): 66−71. doi: 10.1016/j.ifacol.2019.09.165

    CrossRef Google Scholar

    [17] GALVIN K P, DICKINSON J E. Fluidized bed desliming in fine particle flotation − part Ⅱ: flotation of a model feed[J]. Chemical Engineering Science, 2014, 108(1): 299−309.

    Google Scholar

    [18] JAMESON G J. New directions in flotation machine design (Conference Paper)[J]. Minerals Engineering, 2010, 23(11/12/13): 835−841. doi: 10.1016/j.mineng.2010.04.001

    CrossRef Google Scholar

    [19] J M M, H L G. Air−assisted density separator device and method: US19990276212[P]. 1999-03-25.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views(367) PDF downloads(53) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint