Citation: | LUO Xuanxu, FENG Dongxia, TONG Xiong, XIONG Yunong, LUO Hengtong, GUO Minglong, DONG Meng. HydroFloat Separation Tests of Coarse Particles from Pulang Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2024.03.008 |
Porphyry copper mine from Yunnan is refractory both in grinding and separation. HydroFloat separation method was employed for coarse particle flotation based on the analysis of ore properties. The target minerals are clopyrite and molybdenite, and gangue minerals mainly quartz and sodium/calcium feldspar. After screening, bulk flotation was conducted with HydroFloat to cast away coarse gangue minerals, which subsequently reduce the energy consumption of further grinding. HydroFloat flotation induces air bubbles based on the traditional fluidized beds, where the suspended coarse particles rise along with bubbles under compound force field. With a tailing disposal rate of 48.80%, the grade of copper increased from 0.39% to 0.73% with a recovery of 95.84%, and the grade of molybdenum increased from 0.009% to 0.016% with a recovery of 92.05%.
[1] | 祁梦瑶, 彭伟军, 曹亦俊, 等. 硫化铜钼矿浮选分离抑制剂研究进展[J]. 金属矿山, 2023(8): 1−16. QI M Y, PENG W J, CAO Y J, et al. Research progress of flotation separation depressants for copper−molybdenum sulfide ore[J]. Metal Mine, 2023(8): 1−16. |
[2] | 宋翔宇, 张红涛, 许来福, 等. 铜钼分离工艺研究现状与展望[J]. 有色金属(选矿部分), 2022(6): 92−101+114. SONG X Y, ZHANG H T, Xu L F, et al. Research status and prospect of Cu−Mo separation technology[J]. Nonferrous Metals(Mineral Processing Section), 2022(6): 92−101+114. |
[3] | 江少卿. 全球铜矿资源分布[J]. 世界有色金属, 2018(2): 1−3. JIANG S Q. Distribution of copper resources in the world[J]. World Nonferrous Metals, 2018(2): 1−3. |
[4] | ESKDALE A E, SMITH D J, ENE V V, et al. Economic by−products in copper porphyries: silver in the ascutita Cu−porphyry, Romania[J]. Ore Geology Reviews, 2022, 150: 105135. doi: 10.1016/j.oregeorev.2022.105135 |
[5] | 刘鑫鑫, 章晓林, 许兴隆. 辉钼矿浮选中铜铅抑制剂及其抑制机理研究进展[J]. 化工矿物与加工, 2024, 53(6): 65-75. LIU X X, ZHANG X L, XU X L. Research progress of copper lead depressants and their inhibition mechanism in molybdenite flotation[J]. Industrial Minerals&Processing, 2024, 53(6): 65-75. |
[6] | 杨孟月, 韩百岁, 宋宝旭, 等. 铜钼分离抑制剂研究进展[J]. 有色金属(选矿部分), 2023(2): 173−182. YANG M Y, HAN B S, SONG B X, et al. Research progress of depressants in separation of copper and molybdenum[J]. Nonferrous Metals(Mineral Processing Section), 2023(2): 173−182. |
[7] | 杨晓峰, 刘瑶瑶. 铜钼矿浮选研究现状与进展[J]. 矿冶, 2021, 30(6): 42−47. YANG X F, LIU Y Y. Research status and progress of flotation of copper−molybdenum ore[J]. Mining and Metallurgy, 2021, 30(6): 42−47. |
[8] | 聂世华. 某低品位铜钼矿石浮选试验研究[J]. 现代矿业, 2023, 39(6): 185−189. NIE S H. Flotation test research of a low−grade copper−molybdenum ore[J]. Modern Mining, 2023, 39(6): 185−189. |
[9] | 梁泽跃, 彭远伦, 李崇德. 提高普朗铜矿一期斑岩型铜矿石选矿指标的试验研究[J]. 有色金属(选矿部分), 2020(3): 24−28. LIANG Z Y, PENG Y L, LI C D. Experimental study on improving beneficiation index of phase I porphyry copper ore in pulang copper mine[J]. Nonferrous Metals(Mineral Processing Section), 2020(3): 24−28. |
[10] | CHELGANI S C, PARIAN M, PARAPARI P S, et al. A comparative study on the effects of dry and wetgrinding on mineral flotation separation−a review[J]. Journal of Materials Research and Technology, 2019, 8(5): 5004−5011. doi: 10.1016/j.jmrt.2019.07.053 |
[11] | HUBBARD A. Colloidal science of flotation, Anh V. Nguyen and Hans Joachim Schulze, Marcel Dekker, New York, 2004, 850 pages[J]. Minerals Engineering, 2004, 17(6): 839. doi: 10.1016/j.mineng.2004.04.008 |
[12] | 卢寿慈. 粗粒浮选理论、工艺及设备[J]. 国外金属矿选矿, 1982(10): 47−53. LU S C. Theory, technology and equipment of coarse flotation[J]. Metallic Ore Dressing Abroad, 1982(10): 47−53. |
[13] | KOH P T L, SMITH L K. The effect of stirring speed and induction time on flotation(Article)[J]. Minerals Engineering, 2011, 24(5): 442−448. doi: 10.1016/j.mineng.2010.12.007 |
[14] | JAMESON G J. Advances in fine and coarse particle flotation[J]. Canadian Metallurgical Quarterly, 2010, 49(4): 325−330. doi: 10.1179/cmq.2010.49.4.325 |
[15] | KROMAH V, POWOE S B, KHOSRAVI R, et al. Coarse particle separation by fluidized−bed flotation: a comprehensive review[J]. Powder Technology, 2022, 409: 117831. |
[16] | GEORGES−FILTEAU D, BOUCHARD J, DESBIENS A. A dynamic model of fluidized−bed flotation[J]. IFAC−Papers OnLine, 2019, 52(14): 66−71. doi: 10.1016/j.ifacol.2019.09.165 |
[17] | GALVIN K P, DICKINSON J E. Fluidized bed desliming in fine particle flotation − part Ⅱ: flotation of a model feed[J]. Chemical Engineering Science, 2014, 108(1): 299−309. |
[18] | JAMESON G J. New directions in flotation machine design (Conference Paper)[J]. Minerals Engineering, 2010, 23(11/12/13): 835−841. doi: 10.1016/j.mineng.2010.04.001 |
[19] | J M M, H L G. Air−assisted density separator device and method: US19990276212[P]. 1999-03-25. |
Structural representation of hydrofloat cell
Schematic diagram of hydrofloat separator
XRD pattern of raw ore
Microscopy images of −500+106 μm particle
Flotation test flowsheet by hydrofloat
Flotation test process by hydrofloat
Results of sodium silicate dosage tests
Results of lime dosage tests
Results of collector dosage tests
Results of inflatable volume tests
Results of water flow tests
Results of dosing rate tests