Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

LI Zhiyu, LIU Jian, GAO Hulin, HAO Jiamei. Mechanism of Magnesium Ion Strengthening the Depression of Sodium Silicate on Quartz[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 63-73. doi: 10.13779/j.cnki.issn1001-0076.2024.03.007
Citation: LI Zhiyu, LIU Jian, GAO Hulin, HAO Jiamei. Mechanism of Magnesium Ion Strengthening the Depression of Sodium Silicate on Quartz[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 63-73. doi: 10.13779/j.cnki.issn1001-0076.2024.03.007

Mechanism of Magnesium Ion Strengthening the Depression of Sodium Silicate on Quartz

More Information
  • The depression of quartz is very important for the flotation of lead−zinc oxide ore. In the system with dodecylamine as the collector, the use of sodium silicate alone has a weaker depression effect on quartz. Therefore, it is of great significance to reinforce the research on the depression of quartz. The effect and depression mechanism of Mg2+ and sodium silicate as combined depressant on quartz flotation behavior were studied through single mineral flotation experiments, adsorption capacity tests, Zeta potential analysis, XPS detection, and molecular dynamics simulations. The single mineral flotation test showed that the combination of Mg2+ and sodium silicate had a strong depression effect on quartz. The recovery of quartz was 90.15% at pH=9.7 and sodium silicate dosage of 2×10−4 mol/L. While the recovery of quartz was only 3.15% after the addition of 8×10−4 mol/L Mg2+. Zeta potential analysis and adsorption capacity determination indicated that, compared to adding sodium silicate alone, the amount of DDA adsorbed on the surface of quartz decreased by 95% in the presence of Mg−sodium silicate. XPS measurements and flotation solution chemistry indicated that Mg2+ reacts with SiO(OH)3 in the solution to form an ionic polymer. The ionic polymer can weakly physically adsorbed on quartz surface and hinder the adsorption of the collector dodecylamine, thereby achieving depression of quartz. Molecular dynamics simulation showed that Mg2+ enhances the depression effect of sodium silicate, which makes the decrease of DDA concentration on the quartz surface. Therefore, the combined depressant Mg−sodium silicate has a stronger depression effect on quartz.

  • 加载中
  • [1] 从金瑶, 王维清, 林一明, 等. 油酸钠体系下钙离子活化石英浮选机理研究[J]. 非金属矿, 2018, 41(6): 77−79. doi: 10.3969/j.issn.1000-8098.2018.06.024

    CrossRef Google Scholar

    CONG J Y, WANG W J, LIN Y M, et al. Research on the mechanism of calcium ion activated quartz flotation in sodium oleate system[J]. Non−metallic Ore, 2018, 41(6): 77−79. doi: 10.3969/j.issn.1000-8098.2018.06.024

    CrossRef Google Scholar

    [2] 曾维伟. 菱锌矿和石英的浮选分离研究[D]. 长沙: 中南大学, 2012: 8−11.

    Google Scholar

    ZENG W W. Research on flotation separation of smithsonite and quartz[D]. Changsha: Central South University, 2012: 8−11.

    Google Scholar

    [3] 印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.03.005

    CrossRef Google Scholar

    YIN W Z, SUN C Y. Current status of research on flotation principles of silicate minerals[J]. Conservation and Utilization of Mineral Resources, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.03.005

    CrossRef Google Scholar

    [4] 刘文宝. 赤铁矿反浮选高选择性阳离子捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2020: 3−5.

    Google Scholar

    LIU W B. Study on the synthesis and flotation performance of highly selective cationic collectors for hematite reverse flotation[D]. Shenyang: Northeastern University, 2020: 3−5.

    Google Scholar

    [5] SUN H R, YIN W Z. Selective flotation separation of magnesite from quartz by palmitoyl trimethylammonium chloride[J]. Separation and Purification Technology, 2022, 295: 121201. doi: 10.1016/j.seppur.2022.121201

    CrossRef Google Scholar

    [6] SUN H R , YIN W Z, YAO J. Study of selective enhancement of surface hydrophobicity on magnesite and quartz by N, N−Dimethyloctadecylamine: Separation test, adsorption mechanism, and adsorption model[J]. Applied Surface Science, 2022, 583: 152482. doi: 10.1016/j.apsusc.2022.152482

    CrossRef Google Scholar

    [7] 张帅, 赵鑫, 雷大士, 等. 黄铜矿粗选指标对水玻璃超声波改性的响应及其机理[J]. 有色金属工程, 2024, 14(1): 92−99. doi: 10.3969/j.issn.2095-1744.2024.01.012

    CrossRef Google Scholar

    ZHANG S, ZHAO X, LEI D S, et al. Response and mechanism of rough selection indicators of chalcopyrite to ultrasonic modification of sodium silicate[J]. Nonferrous Metal Engineering, 2024, 14(1): 92−99. doi: 10.3969/j.issn.2095-1744.2024.01.012

    CrossRef Google Scholar

    [8] 熊浩, 刘建, 秦晓艳, 等. 改性水玻璃抑制剂研究进展[J]. 矿产保护与利用, 2023, 43(5): 138−145.

    Google Scholar

    XIONG H, LIU J, QIN X Y, et al. Research progress on modified water glass inhibitors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 138−145.

    Google Scholar

    [9] 张泽强. 酸性水玻璃在磷矿浮选中的作用[J]. 中国非金属矿工业导刊, 2003(2): 39−41. doi: 10.3969/j.issn.1007-9386.2003.02.012

    CrossRef Google Scholar

    ZHANG Z Q. The role of acidic water glass in phosphate ore flotation[J]. China Non−metallic Mining Industry Herald, 2003(2): 39−41. doi: 10.3969/j.issn.1007-9386.2003.02.012

    CrossRef Google Scholar

    [10] 冯雅丽, 杨志超, 李浩然, 等. 菱锰矿与石英浮选行为及其机理研究[J]. 东北大学学报(自然科学版), 2014, 35(6): 903−907. doi: 10.3969/j.issn.1005-3026.2014.06.032

    CrossRef Google Scholar

    FENG Y L, YANG Z C, LI H R, et al. Research on the flotation behavior and mechanism of rhodochrosite and quartz[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(6): 903−907. doi: 10.3969/j.issn.1005-3026.2014.06.032

    CrossRef Google Scholar

    [11] 闫雅雯, 罗惠华, 赵军, 等. 胺类捕收剂的应用现状及发展前景[J]. 矿产保护与利用, 2022, 42(2): 59−66. doi: 10.13779/j.cnki.issn1001-0076.2022.02.007

    CrossRef Google Scholar

    YAN Y W, LUO H H, ZHAO J, et al. Application status and development prospect of amine collectors[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 59−66. doi: 10.13779/j.cnki.issn1001-0076.2022.02.007

    CrossRef Google Scholar

    [12] 胡永平, 蔡殿忱. 盐化水玻璃在微细粒菱锰矿与伊利石等脉石矿物分离中的作用[J]. 中国锰业, 1991(5): 30−35.

    Google Scholar

    HU Y P, CAI D C. The role of salted water glass in the separation of fine−grained rhodochrosite and gangue minerals such as illite[J]. China Manganese Industry, 1991(5): 30−35.

    Google Scholar

    [13] 宁江峰, 徐寒冰, 耿亮, 等. Fe3+对水玻璃体系下萤石、方解石浮选分离的影响[J]矿产综合利用, 2023(6): 15−22.

    Google Scholar

    NING J F, XU H B, GENG L, et al. The effect of Fe3+ on the flotation separation of fluorite and calcite in a water glass system[J]. Multipurpose Utilization of Mineral Resources, 2023(6): 15−22.

    Google Scholar

    [14] HE J F, CHEN H, ZHANG M, et al. Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643: 128702. doi: 10.1016/j.colsurfa.2022.128702

    CrossRef Google Scholar

    [15] YAO W, LI M, ZHANG M, et al. Effect of Zn2+ and its addition sequence on flotation separation of scheelite from calcite using water glass[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124394. doi: 10.1016/j.colsurfa.2019.124394

    CrossRef Google Scholar

    [16] 刘凤春, 崔振坤. 酸化水玻璃在萤石精选降硅中的影响研究[J]. 中国非金属矿工业导刊, 2021(1): 65−68.

    Google Scholar

    LIU F C, CUI Z K. Research on the influence of acidified water glass on silicon reduction in fluorite selection[J]. China Nonmetallic Mining Industry Herald, 2021(1): 65−68.

    Google Scholar

    [17] LIAO R P, WEN S M, LIU J, et al. Experimental and molecular dynamics simulation study on DDA/DDTC mixed collector co−adsorption on sulfidized smithsonite surfaces[J]. Minerals Engineering, 2024, 205: 108493. doi: 10.1016/j.mineng.2023.108493

    CrossRef Google Scholar

    [18] 王鑫, 何廷树, 鱼博, 等. 不同矿浆温度下Ca2+、Mg2+对黄铁矿可浮性的影响[J/OL]. 矿产综合利用, 2023: 7−10(2023−10−16)[2024−02−25]. http://kns.cnki.net/kcms/detail/51.1251.TD.

    Google Scholar

    WANG X, HE Y S, YU B, et al. The influence of Ca2+ and Mg2+ on the floatability of pyrite at different slurry temperatures[J/OL]. Multipurpose Utilization of Mineral Resources, 2023: 7−10(2023−10−16) [2024−02−25]. http://kns.cnki.net/kcms/detail/51.1251.

    Google Scholar

    [19] BATJARGAL K, GÜVEN O, OZDEMIR O, et al. Correlation of flotation recoveries and Bubble–Particle attachment time for dodecyl ammonium hydrochloride/frother/quartz flotation system[J]. Minerals, 2023, 13(10): 7−11.

    Google Scholar

    [20] WANG J H, WANG Y, MA T, et al. Synergistic mechanism of adsorption−diffusion at quartz−water interface for the dewatering of waste slurry using APAM flocculant: Insights from molecular dynamics simulation[J]. Journal of Water Process Engineering, 2023, 55: 14275.

    Google Scholar

    [21] HAO H Q, CAO Y J, LI L X, et al. Dispersion and depression mechanism of sodium silicate on quartz: Combined molecular dynamics simulations and density functional theory calculations[J]. Applied Surface Science, 2021, 537: 147926. doi: 10.1016/j.apsusc.2020.147926

    CrossRef Google Scholar

    [22] R. G Q, EDER P, H. J S, et al. Polymer affinity with quartz (101) surface in saline solutions: A molecular dynamics study[J]. Minerals Engineering, 2022, 186: 107750. doi: 10.1016/j.mineng.2022.107750

    CrossRef Google Scholar

    [23] DUAN H, LIU W, WANG X, et al. Effect of secondary amino on the adsorption of N−Dodecylethylenediamine on quartz surface: A molecular dynamics study[J]. Powder Technology, 2019(351): 46−53.

    Google Scholar

    [24] Study on the stability of sulfide solid−state electrolyte based upon electronic structure calculated from first principles calculation[J]. ECS Meeting Abstracts, 2019: 2−3.

    Google Scholar

    [25] 余乐. 十二胺体系下白云母表面性质与可浮性关系研究[D]. 西安: 西安建筑科技大学, 2017: 41−45.

    Google Scholar

    YU L. Research on the relationship between surface properties and floatability of muscovite under dodecylamine system[D]. Xi'an: Xi'an University of Architecture and Technology, 2017: 41−45.

    Google Scholar

    [26] TIAN J, XU L, SUN W, et al. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite[J]. Minerals Engineering, 2019, 137: 160−170. doi: 10.1016/j.mineng.2019.04.011

    CrossRef Google Scholar

    [27] DENG R, YANG X, HU Y, et al. Effect of Fe(Ⅱ) as assistant depressant on flotation separation of scheelite from calcite[J]. Minerals Engineering, 2018, 118: 133−140. doi: 10.1016/j.mineng.2017.12.017

    CrossRef Google Scholar

    [28] 宁江峰. Zn2+、Fe3+与水玻璃组合抑制剂对萤石、方解石浮选分离的影响研究[D]. 武汉: 武汉科技大学, 2022: 19−21.

    Google Scholar

    NING J F. Study on the effect of Zn2+, Fe3+ and water glass combination inhibitors on the flotation separation of fluorite and calcite[D]. Wuhan: Wuhan University of Science and Technology, 2022: 19−21.

    Google Scholar

    [29] WEI Z, HU Y, HAN H, et al. Selective flotation of scheelite from calcite using Al−Na2SiO3 polymer as depressant and Pb−BHA complexes as collector[J]. Minerals Engineering, 2018, 120: 29−34. doi: 10.1016/j.mineng.2018.01.036

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(3)

Article Metrics

Article views(423) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint