Citation: | LI Zhiyu, LIU Jian, GAO Hulin, HAO Jiamei. Mechanism of Magnesium Ion Strengthening the Depression of Sodium Silicate on Quartz[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 63-73. doi: 10.13779/j.cnki.issn1001-0076.2024.03.007 |
The depression of quartz is very important for the flotation of lead−zinc oxide ore. In the system with dodecylamine as the collector, the use of sodium silicate alone has a weaker depression effect on quartz. Therefore, it is of great significance to reinforce the research on the depression of quartz. The effect and depression mechanism of Mg2+ and sodium silicate as combined depressant on quartz flotation behavior were studied through single mineral flotation experiments, adsorption capacity tests, Zeta potential analysis, XPS detection, and molecular dynamics simulations. The single mineral flotation test showed that the combination of Mg2+ and sodium silicate had a strong depression effect on quartz. The recovery of quartz was 90.15% at pH=9.7 and sodium silicate dosage of 2×10−4 mol/L. While the recovery of quartz was only 3.15% after the addition of 8×10−4 mol/L Mg2+. Zeta potential analysis and adsorption capacity determination indicated that, compared to adding sodium silicate alone, the amount of DDA adsorbed on the surface of quartz decreased by 95% in the presence of Mg−sodium silicate. XPS measurements and flotation solution chemistry indicated that Mg2+ reacts with SiO(OH)3− in the solution to form an ionic polymer. The ionic polymer can weakly physically adsorbed on quartz surface and hinder the adsorption of the collector dodecylamine, thereby achieving depression of quartz. Molecular dynamics simulation showed that Mg2+ enhances the depression effect of sodium silicate, which makes the decrease of DDA concentration on the quartz surface. Therefore, the combined depressant Mg−sodium silicate has a stronger depression effect on quartz.
[1] | 从金瑶, 王维清, 林一明, 等. 油酸钠体系下钙离子活化石英浮选机理研究[J]. 非金属矿, 2018, 41(6): 77−79. doi: 10.3969/j.issn.1000-8098.2018.06.024 CONG J Y, WANG W J, LIN Y M, et al. Research on the mechanism of calcium ion activated quartz flotation in sodium oleate system[J]. Non−metallic Ore, 2018, 41(6): 77−79. doi: 10.3969/j.issn.1000-8098.2018.06.024 |
[2] | 曾维伟. 菱锌矿和石英的浮选分离研究[D]. 长沙: 中南大学, 2012: 8−11. ZENG W W. Research on flotation separation of smithsonite and quartz[D]. Changsha: Central South University, 2012: 8−11. |
[3] | 印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.03.005 YIN W Z, SUN C Y. Current status of research on flotation principles of silicate minerals[J]. Conservation and Utilization of Mineral Resources, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.03.005 |
[4] | 刘文宝. 赤铁矿反浮选高选择性阳离子捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2020: 3−5. LIU W B. Study on the synthesis and flotation performance of highly selective cationic collectors for hematite reverse flotation[D]. Shenyang: Northeastern University, 2020: 3−5. |
[5] | SUN H R, YIN W Z. Selective flotation separation of magnesite from quartz by palmitoyl trimethylammonium chloride[J]. Separation and Purification Technology, 2022, 295: 121201. doi: 10.1016/j.seppur.2022.121201 |
[6] | SUN H R , YIN W Z, YAO J. Study of selective enhancement of surface hydrophobicity on magnesite and quartz by N, N−Dimethyloctadecylamine: Separation test, adsorption mechanism, and adsorption model[J]. Applied Surface Science, 2022, 583: 152482. doi: 10.1016/j.apsusc.2022.152482 |
[7] | 张帅, 赵鑫, 雷大士, 等. 黄铜矿粗选指标对水玻璃超声波改性的响应及其机理[J]. 有色金属工程, 2024, 14(1): 92−99. doi: 10.3969/j.issn.2095-1744.2024.01.012 ZHANG S, ZHAO X, LEI D S, et al. Response and mechanism of rough selection indicators of chalcopyrite to ultrasonic modification of sodium silicate[J]. Nonferrous Metal Engineering, 2024, 14(1): 92−99. doi: 10.3969/j.issn.2095-1744.2024.01.012 |
[8] | 熊浩, 刘建, 秦晓艳, 等. 改性水玻璃抑制剂研究进展[J]. 矿产保护与利用, 2023, 43(5): 138−145. XIONG H, LIU J, QIN X Y, et al. Research progress on modified water glass inhibitors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 138−145. |
[9] | 张泽强. 酸性水玻璃在磷矿浮选中的作用[J]. 中国非金属矿工业导刊, 2003(2): 39−41. doi: 10.3969/j.issn.1007-9386.2003.02.012 ZHANG Z Q. The role of acidic water glass in phosphate ore flotation[J]. China Non−metallic Mining Industry Herald, 2003(2): 39−41. doi: 10.3969/j.issn.1007-9386.2003.02.012 |
[10] | 冯雅丽, 杨志超, 李浩然, 等. 菱锰矿与石英浮选行为及其机理研究[J]. 东北大学学报(自然科学版), 2014, 35(6): 903−907. doi: 10.3969/j.issn.1005-3026.2014.06.032 FENG Y L, YANG Z C, LI H R, et al. Research on the flotation behavior and mechanism of rhodochrosite and quartz[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(6): 903−907. doi: 10.3969/j.issn.1005-3026.2014.06.032 |
[11] | 闫雅雯, 罗惠华, 赵军, 等. 胺类捕收剂的应用现状及发展前景[J]. 矿产保护与利用, 2022, 42(2): 59−66. doi: 10.13779/j.cnki.issn1001-0076.2022.02.007 YAN Y W, LUO H H, ZHAO J, et al. Application status and development prospect of amine collectors[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 59−66. doi: 10.13779/j.cnki.issn1001-0076.2022.02.007 |
[12] | 胡永平, 蔡殿忱. 盐化水玻璃在微细粒菱锰矿与伊利石等脉石矿物分离中的作用[J]. 中国锰业, 1991(5): 30−35. HU Y P, CAI D C. The role of salted water glass in the separation of fine−grained rhodochrosite and gangue minerals such as illite[J]. China Manganese Industry, 1991(5): 30−35. |
[13] | 宁江峰, 徐寒冰, 耿亮, 等. Fe3+对水玻璃体系下萤石、方解石浮选分离的影响[J]矿产综合利用, 2023(6): 15−22. NING J F, XU H B, GENG L, et al. The effect of Fe3+ on the flotation separation of fluorite and calcite in a water glass system[J]. Multipurpose Utilization of Mineral Resources, 2023(6): 15−22. |
[14] | HE J F, CHEN H, ZHANG M, et al. Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643: 128702. doi: 10.1016/j.colsurfa.2022.128702 |
[15] | YAO W, LI M, ZHANG M, et al. Effect of Zn2+ and its addition sequence on flotation separation of scheelite from calcite using water glass[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124394. doi: 10.1016/j.colsurfa.2019.124394 |
[16] | 刘凤春, 崔振坤. 酸化水玻璃在萤石精选降硅中的影响研究[J]. 中国非金属矿工业导刊, 2021(1): 65−68. LIU F C, CUI Z K. Research on the influence of acidified water glass on silicon reduction in fluorite selection[J]. China Nonmetallic Mining Industry Herald, 2021(1): 65−68. |
[17] | LIAO R P, WEN S M, LIU J, et al. Experimental and molecular dynamics simulation study on DDA/DDTC mixed collector co−adsorption on sulfidized smithsonite surfaces[J]. Minerals Engineering, 2024, 205: 108493. doi: 10.1016/j.mineng.2023.108493 |
[18] | 王鑫, 何廷树, 鱼博, 等. 不同矿浆温度下Ca2+、Mg2+对黄铁矿可浮性的影响[J/OL]. 矿产综合利用, 2023: 7−10(2023−10−16)[2024−02−25]. http://kns.cnki.net/kcms/detail/51.1251.TD. WANG X, HE Y S, YU B, et al. The influence of Ca2+ and Mg2+ on the floatability of pyrite at different slurry temperatures[J/OL]. Multipurpose Utilization of Mineral Resources, 2023: 7−10(2023−10−16) [2024−02−25]. http://kns.cnki.net/kcms/detail/51.1251. |
[19] | BATJARGAL K, GÜVEN O, OZDEMIR O, et al. Correlation of flotation recoveries and Bubble–Particle attachment time for dodecyl ammonium hydrochloride/frother/quartz flotation system[J]. Minerals, 2023, 13(10): 7−11. |
[20] | WANG J H, WANG Y, MA T, et al. Synergistic mechanism of adsorption−diffusion at quartz−water interface for the dewatering of waste slurry using APAM flocculant: Insights from molecular dynamics simulation[J]. Journal of Water Process Engineering, 2023, 55: 14275. |
[21] | HAO H Q, CAO Y J, LI L X, et al. Dispersion and depression mechanism of sodium silicate on quartz: Combined molecular dynamics simulations and density functional theory calculations[J]. Applied Surface Science, 2021, 537: 147926. doi: 10.1016/j.apsusc.2020.147926 |
[22] | R. G Q, EDER P, H. J S, et al. Polymer affinity with quartz (101) surface in saline solutions: A molecular dynamics study[J]. Minerals Engineering, 2022, 186: 107750. doi: 10.1016/j.mineng.2022.107750 |
[23] | DUAN H, LIU W, WANG X, et al. Effect of secondary amino on the adsorption of N−Dodecylethylenediamine on quartz surface: A molecular dynamics study[J]. Powder Technology, 2019(351): 46−53. |
[24] | Study on the stability of sulfide solid−state electrolyte based upon electronic structure calculated from first principles calculation[J]. ECS Meeting Abstracts, 2019: 2−3. |
[25] | 余乐. 十二胺体系下白云母表面性质与可浮性关系研究[D]. 西安: 西安建筑科技大学, 2017: 41−45. YU L. Research on the relationship between surface properties and floatability of muscovite under dodecylamine system[D]. Xi'an: Xi'an University of Architecture and Technology, 2017: 41−45. |
[26] | TIAN J, XU L, SUN W, et al. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite[J]. Minerals Engineering, 2019, 137: 160−170. doi: 10.1016/j.mineng.2019.04.011 |
[27] | DENG R, YANG X, HU Y, et al. Effect of Fe(Ⅱ) as assistant depressant on flotation separation of scheelite from calcite[J]. Minerals Engineering, 2018, 118: 133−140. doi: 10.1016/j.mineng.2017.12.017 |
[28] | 宁江峰. Zn2+、Fe3+与水玻璃组合抑制剂对萤石、方解石浮选分离的影响研究[D]. 武汉: 武汉科技大学, 2022: 19−21. NING J F. Study on the effect of Zn2+, Fe3+ and water glass combination inhibitors on the flotation separation of fluorite and calcite[D]. Wuhan: Wuhan University of Science and Technology, 2022: 19−21. |
[29] | WEI Z, HU Y, HAN H, et al. Selective flotation of scheelite from calcite using Al−Na2SiO3 polymer as depressant and Pb−BHA complexes as collector[J]. Minerals Engineering, 2018, 120: 29−34. doi: 10.1016/j.mineng.2018.01.036 |
XRD analysis of quartz
Ultraviolet visible standard curve of eosin Y-DDA solution with different concentration of DDA
Molecular structure optimization configuration of each reagent
Initial configurations of each system and the equilibrium configurations obtained from molecular dynamics simulations (System 1-no depressant system; System 2-sodium silicate system; System 3-Mg-sodium silicate system)
Effect of DDA dosage (a) and pH value (b) on the recovery rate of quartz flotation
Effect of sodium silicate dosage on quartz flotation recovery rate
Effect of Mg2+ dosage on quartz flotation recovery rate
Adsorption capacity of Mg2+ components on the surface of quartz minerals with different dosage of Mg2+
Effect of the combination of Mg2+ and sodium silicate on the adsorption capacity of DDA on quartz surface
Effect of pH value on the Zeta potential of quartz in different solutions
XPS full spectrum(a) and elemental content(b) of quartz surface in sodium silicate or Mg-sodium silicate system
Fine spectral peak fitting of O 1s on quartz surface in sodium silicate or Mg-sodium silicate system
Fine spectral peak fitting of Si 2p on quartz surface in sodium silicate or Mg-sodium silicate system
Hydrolyzed components of Mg2+
Relative concentration profiles of DDA in different depressant systems on the vertical direction of quartz (101) surface