Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 6
Article Contents

DING Jiaduo, LI Hongpeng, SONG Zian, CHEN Qiusong. Experimental Study on Refined Flocculation and Settlement Parameters of Ultrafine Unclassified tailings from Yinshan Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 71-79. doi: 10.13779/j.cnki.issn1001-0076.2024.06.006
Citation: DING Jiaduo, LI Hongpeng, SONG Zian, CHEN Qiusong. Experimental Study on Refined Flocculation and Settlement Parameters of Ultrafine Unclassified tailings from Yinshan Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 71-79. doi: 10.13779/j.cnki.issn1001-0076.2024.06.006

Experimental Study on Refined Flocculation and Settlement Parameters of Ultrafine Unclassified tailings from Yinshan Mine

More Information
  • The tailings from the Yinshan Mine contain approximately 51% ultrafine particles of less than 19 μm, presenting significant challenges to the thickening and dewatering processes. In particular, the effectiveness of deep cone thickeners is particularly affected by seasonal variations and the quality and concentration of the tailings feed. In order to improve the settlement performance of the deep cone thickener at the Yinshan Mine. Comprehensive experiments were conducted, including physical and chemical property tests, laboratory−scale flocculation settlement experiments, and semi−industrial experimental focusing on the flocculation of ultrafine unclassified tailings. The results showed that DR1030 proved to be the optimal flocculant. At a tailings slurry concentration of 10%, the consumption of DR1030 was 30.0 g/t in summer and 33.0 g/t in other seasons; at a 15% slurry concentration, the consumption was 35.0 g/t in summer and 38.0 g/t in other seasons. Under semi−industrial experimental conditions, the actual consumption of DR1030 was 34.0 g/t, which was 4.4 g/t less than that of the existing flocculants. Furthermore, the underflow concentration with DR1030 exhibited more stable and higher mass concentration, which was improved by 2.6%. Slump flow measurement demonstrated that DR1030 had no significant effect on the fluidity of the slurry. This study provides critical process parameters that can improve cemented paste backfill quality at the Yinshan Mine, as well as valuable insights for similar mining operations.

  • 加载中
  • [1] 赵兴东, 朱乾坤, 曾楠. 三山岛金矿深部高应力节理化巷道围岩控制技术研究[J]. 黄金, 2023, 44(9): 5−12. doi: 10.11792/hj20230902

    CrossRef Google Scholar

    ZHAO X D, ZHU Q K, ZENG N. Study on the control technology of deep high−stress jointed surrounding rock in Sanshandao Gold Mine[J]. Gold, 2023, 44(9): 5−12. doi: 10.11792/hj20230902

    CrossRef Google Scholar

    [2] 胡亚军, 陈彦亭, 赖伟, 等. 超细全尾砂似膏体绿色胶凝充填关键技术研究[J]. 黄金, 2023, 44(5): 12−15+20. doi: 10.11792/hj20230504

    CrossRef Google Scholar

    HU Y J, CHEN Y T, LAI W, et al. Study of key technology of paste−like green cemented filling with ultra−fine ungraded tailings[J]. Gold, 2023, 44(5): 12−15+20. doi: 10.11792/hj20230504

    CrossRef Google Scholar

    [3] 吴爱祥, 王勇, 张敏哲, 等. 金属矿山地下开采关键技术新进展与展望[J]. 金属矿山, 2021(1): 1−13.

    Google Scholar

    WU A X, WANG Y, ZHANG M Z, et al. New development and prospect of key technology in underground mining of metal mines[J]. Metal Mine, 2021(1): 1−13.

    Google Scholar

    [4] 吴爱祥, 王勇, 王洪江. 膏体充填技术现状及趋势[J]. 金属矿山, 2016(7): 1−9. doi: 10.3969/j.issn.1001-1250.2016.07.001

    CrossRef Google Scholar

    WU A X, WANG Y, WANG H J. Status and prospects of the paste backfill technology[J]. Metal Mine, 2016(7): 1−9. doi: 10.3969/j.issn.1001-1250.2016.07.001

    CrossRef Google Scholar

    [5] 陈述文, 陈启文. HRC高压浓缩机的原理、结构及应用[J]. 金属矿山, 2002(12): 34−37. doi: 10.3321/j.issn:1001-1250.2002.12.012

    CrossRef Google Scholar

    CHEN S W, CHEN Q W. Principle, structure and application of HRC high pressure thickener[J]. Metal Mine, 2002(12): 34−37. doi: 10.3321/j.issn:1001-1250.2002.12.012

    CrossRef Google Scholar

    [6] 冯胜利. 谈全尾矿膏体制备与沉降的关系[J]. 铜业工程, 2013(6): 42−44. doi: 10.3969/j.issn.1009-3842.2013.06.013

    CrossRef Google Scholar

    FENG S L. Discussion on the relationship between preparation and sedimentation of whole−tailing paste[J]. Copper Engineering, 2013(6): 42−44. doi: 10.3969/j.issn.1009-3842.2013.06.013

    CrossRef Google Scholar

    [7] 吴爱祥, 杨盛凯, 王洪江, 等. 超细全尾膏体处置技术现状与趋势[J]. 采矿技术, 2011, 11(3): 4−8+18. doi: 10.3969/j.issn.1671-2900.2011.03.002

    CrossRef Google Scholar

    WU A X, YANG S K, WANG H J, et al. Current status and trends of ultra−fine tailings disposal technology[J]. Mining Technology, 2011, 11(3): 4−8+18. doi: 10.3969/j.issn.1671-2900.2011.03.002

    CrossRef Google Scholar

    [8] Li C H, Shi Y Q, Liu P, et al. Analysis of the sedimentation characteristics of ultrafine tailings based on an orthogonal experiment[J]. Advances in Materials Science and Engineering, 2019(1): 1−13.

    Google Scholar

    [9] 卞继伟, 王新民, 肖崇春. 全尾砂动态絮凝沉降试验研究[J]. 中南大学学报(自然科学版), 2017, 48(12): 3278−3283.

    Google Scholar

    BIAN J W, WANG X M, XIAO C C. Experimental study on dynamic flocculating sedimentation of unclassified tailings[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3278−3283.

    Google Scholar

    [10] 刘奇, 岑佑华, 唐鸣东, 等. 不同尾砂物理性质对尾砂浓密性能的影响[J]. 矿业研究与开发, 2021, 41(5): 124−130.

    Google Scholar

    LIU Q, CEN Y H, TANG M D, et al. Influence of different physical properties of tailings on thickening performance[J]. Mining Research and Development, 2021, 41(5): 124−130.

    Google Scholar

    [11] 郭佳宾, 王洪江, 田志刚, 等. 不同类型絮凝剂对超细尾砂浓密性能的影响[J]. 矿业研究与开发, 2021, 41(4): 141−145.

    Google Scholar

    GUO J B, WANG H J, TIAN Z G, et al. Effect of different types of flocculant on the thickening property of superfine tailings mining[J]. Research and Development, 2021, 41(4): 141−145.

    Google Scholar

    [12] 王洪江, 杨亚楠, 郭佳宾. 基于双重絮凝的超细尾砂浓密脱水性能及絮凝机制[J]. 中南大学学报(自然科学版), 2023, 54(9): 3597−3608.

    Google Scholar

    WANG H J, YANG Y N, GUO J B. Thickening dehydration performance and flocculation mechanism of ultrafine tailings based on dual flocculation[J]. Journal of Central South University (Science and Technology), 2023, 54(9): 3597−3608.

    Google Scholar

    [13] 杨晴, 杨仕教, 张冉玥. 基于上澄清液浊度的超细尾砂絮凝沉降试验[J]. 黄金科学技术, 2022, 30(6): 948−957.

    Google Scholar

    YANG Q, YANG S J, ZHANG R Y. Optimal flocculating sedimentation parameters of unclassified tailings slurry[J]. Gold Science and Technology, 2022, 30(6): 948−957.

    Google Scholar

    [14] 王新民, 刘吉祥, 陈秋松, 等. 超细全尾砂絮凝沉降参数优化模型[J]. 科技导报, 2014, 32(17): 23−28.

    Google Scholar

    WANG X M, LIU J X, CHEN Q S, et al. Optimal flocculating sedimentation parameters of unclassified tailings[J]. Science & Technology Review, 2014, 32(17): 23−28.

    Google Scholar

    [15] 吴再海. 超细尾砂充填料浆絮凝沉降特性与浓密机理研究[D]. 北京: 北京科技大学, 2022.

    Google Scholar

    WU Z H. Study on flocculation settling characteristics and thickening mechanism of ultrafine tailing slurry[D]. Beijing: University of Science and Technology Beijing, 2022.

    Google Scholar

    [16] 王洪江, 王小林, 张玺, 等. 超细全尾砂深锥动态絮凝浓密试验[J]. 工程科学学报, 2022, 44(2): 163−169.

    Google Scholar

    WANG H J, WAGN X L, ZHANG X, et al. Deep cone dynamic flocculation thickening of ultrafine full tailings[J]. Chinese Journal of Engineering, 2022, 44(2): 163−169.

    Google Scholar

    [17] 田长林. 武山铜矿全尾砂沉降浓缩试验研究[J]. 铜业工程, 2023(1): 127−131. doi: 10.3969/j.issn.1009-3842.2023.01.016

    CrossRef Google Scholar

    TIAN C L. Sedimentation and concentration of unclassified tailings in Wushan Copper Mine[J]. Copper Engineering, 2023(1): 127−131. doi: 10.3969/j.issn.1009-3842.2023.01.016

    CrossRef Google Scholar

    [18] 陈格仲, 李翠平, 阮竹恩, 等. 膏体充填中絮凝条件对絮团结构及固液分离效率的影响[J]. 中国有色金属学报, 2022, 32(10): 3169−3182.

    Google Scholar

    CHEN G Z, LI C P, RUAN Z E, et al. Influence of flocculation conditions on floc structure and solid−liquid separation in cemented paste filling[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3169−3182.

    Google Scholar

    [19] 李公成, 王洪江, 吴爱祥, 等. 基于动态沉降压密实验的深锥浓密机关键参数确定[J]. 中国有色金属学报, 2017, 27(8): 1693−1700.

    Google Scholar

    LI G C, WANG H J, WU A X, et al. Key parameters determination of deep cone thickener based on dynamical settling and compaction experiments[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1693−1700.

    Google Scholar

    [20] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.

    Google Scholar

    XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2016.

    Google Scholar

    [21] 刘克爽, 康长科, 崔宝玉, 等. 黑龙江某铜钼混合精矿絮凝沉降性能及机理研究[J]. 中国矿业, 2024, 33(7): 1−9. doi: 10.12075/j.issn.1004-4051.20241368

    CrossRef Google Scholar

    LIU K S, KANG Z K, CUI B Y, et al. Flocculation and settling performance and mechanism of a copper−molybdenum mixed concentrate in Heilongjiang Province[J]. China Mining Magazine, 2024, 33(7): 1−9. doi: 10.12075/j.issn.1004-4051.20241368

    CrossRef Google Scholar

    [22] OWEN M. The effect of temperature on the settling velocities of an estuary mud[R]. Wallingford: Hydraulics Research station, 1972.

    Google Scholar

    [23] 张钦礼, 王石, 王新民. 絮凝剂单耗对全尾砂浆浑液面沉速的影响规律[J]. 中国有色金属学报, 2017, 27(2): 318−324.

    Google Scholar

    ZHANG Q L, WANG, WANG X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(2): 318−324.

    Google Scholar

    [24] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017.

    Google Scholar

    Ministry of Housing and Urban−Rural Development of the People's Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture and Building Press, 2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views(69) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint