Citation: | NIU Fusheng, CHEN Yuying, ZHANG Jinxia, LIU Fei. Flocculation Effect of Ferric Chloride on Ultra−fine Tailings[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 64-70. doi: 10.13779/j.cnki.issn1001-0076.2024.08.004 |
With the advancement of mineral processing technology, the diameter of tailings is getting smaller and smaller, even reaching the ultra−fine level. In order to realize the high concentration filling of ultrafine tailings in the concentrator, the flocculation settling and thickening of ultrafine tailings is the critical technology. Therefore, the flocculation of certain ultrafine iron tailings was studied with ferric chloride produced from iron and steel hydrochloric acid pickling waste liquor as a flocculant. The effects of ferric chloride dosage, stirring speed, and stirring time on the flocculation of ultra-fine iron tailings were investigated using an industrial CCD camera and image processing software (Image−Pro Plus). The experimental results show that when the amount of FeCl3 was
[1] | 阮竹恩, 吴爱祥, 王贻明, 等. 絮凝沉降对浓缩超细尾砂料浆屈服应力的影响[J]. 工程科学学报, 2021, 43(10): 1276−1282. RUAN Z E, WU A X, WANG Y M, et al. Effect of flocculation settlement on yield stress of concentrated ultrafine tailings slurry[J]. Chinese Journal of Engineering Science, 2021, 43(10): 1276−1282. |
[2] | WANG X, LI S, et al. Fly−ash−based magnetic coagulant for rapid sedimentation of electronegative slimes and ultrafine tailings[J]. Powder Technology, 2016, 303(12): 20−26. |
[3] | LI W, CHENG S, ZHOU L, et al. Enhanced iron recovery from magnetic separation of ultrafine specularite through polymer−bridging flocculation: A study of flocculation performance and mechanism[J]. Separation and Purification Technology, 2023, 308: 122882. doi: 10.1016/j.seppur.2022.122882 |
[4] | 杨纪光, 吴再海, 寇云鹏, 等. 某金矿两段分级超细尾砂静态沉降与半工业浓密试验研究[J]. 金属矿山, 2022(9): 37−42. YANG J G, WU Z H, KOU Y P, et al. Experimental study on static sedimentation and semi−industrial thickening of two−stage graded ultrafine tailings in a gold mine[J]. Metal Mine, 2022(9): 37−42. |
[5] | 吴爱祥, 阮竹恩, 王建栋, 等. 基于超级絮凝的超细尾砂絮凝行为优化[J]. 工程科学学报, 2019, 41(8): 981−986. WU A X, RUAN Z E, WANG J D, et al. Optimization of flocculation behavior of ultrafine tailings based on super flocculation[J]. Chinese Journal of Engineering, 2019, 41(8): 981−986. |
[6] | 吴再海. 基于超细尾砂絮凝沉降浓密试验及应用分析[J]. 有色金属工程, 2022, 12(10): 117−125. WU Z H. Test and application analysis of thickening based on flocculation settlement of ultrafine tailings[J]. Nonferrous Metals Engineering, 2022, 12(10): 117−125. |
[7] | 周解臻, 王祎, 石旭, 等. 三氯化铁絮凝沉淀和生化组合工艺处理百菌清生产工艺废水[J]. 现代农药, 2019, 18(2): 17−20+23. ZHOU X Z, WANG Y, SHI X, et al. Treatment of chlorothalonil production process wastewater by ferric chloride flocculation and precipitation and biochemical combination process[J]. Modern Pesticide, 2019, 18(2): 17−20+23. |
[8] | 何亮亮, 黄春梅, 邵燕. 三氯化铁在废水中絮凝性能研究[J]. 广东化工, 2022, 49(18): 147−150. HE L L, HUANG C M, SHAO Y. Study on flocculation performance of ferric chloride in wastewater[J]. Guangdong Chemical Industry, 2022, 49(18): 147−150. |
[9] | 张晋霞, 王聪磊, 牛福生, 等. 三氯化铁−淀粉复合絮凝剂的制备及性能[J/OL]. 矿产综合利用: 1−10[2024−03−14]. http: //kns. cnki. net/kcms/detail/51.1251. td. 20231107.1434. 020. html. ZHANG J X, WANG C L, NIU F S, et al. Preparation and performance of ferric chloride−starch composite flocculant[J/OL]. Comprehensive Utilization of Minerals: 1−10[2024−03−14]. http://kns.cnki.net/kcms/detail/51.1251.td.20231107.1434.020.html. |
[10] | 龙国兵, 张红梅, 石肖, 等. 三氯化铁对细粒铁尾矿絮凝沉降的影响研究[J]. 矿业研究与开发, 2022, 42(9): 110−115. LONG G B, ZHANG H M, SHI X, et al. Effect of ferric chloride on flocculation and sedimentation of fine−grained iron tailings[J]. Mining Research and Development, 2022, 42(9): 110−115. |
[11] | 赵亚伟. 赤铁矿絮凝形态特征及演化规律[D]. 唐山: 华北理工大学, 2020. ZHAO Y W. Hematite flocculation morphology and evolution[D]. Tangshan: North China University of Technology, 2020. |
[12] | OFORI P, NGUYEN A VFIRTH B, et al. Shear−induced floc structure changes for enhanced dewatering of coal preparation plant tailings[J]. Chemical Engineering Journal, 2011, 172(2): 914−923. |
[13] | GREGORY J, O'MELIA C R. Fundamentals of flocculation[J]. Critical Reviews in Environmental Control, 1989, 19(3): 185−230. doi: 10.1080/10643388909388365 |
[14] | 王铎, 董佳甜, 吴权佳, 等. 电絮凝处理酸性矿山废水及响应面优化[J]. 有色金属(冶炼部分), 2023(12): 69−77. WANG D, DONG J T, WU Q J, et al. Electrocoagulation treatment of acidic mine wastewater and optimization of response surface[J]. Nonferrous Metals (Smelting Part), 2023(12): 69−77. |
[15] | 牛福生, 武佳慧, 于晓东, 等. 响应曲面法优化细粒铁尾矿浆絮凝沉降试验研究[J]. 矿冶工程, 2023, 43(3): 47−51+60. NIU F S, WU J H, YU X D, et al. Experimental study on flocculation and sedimentation of fine−grained iron tailings slurry optimized by response surface method[J]. Mining and Metallurgical Engineering, 2023, 43(3): 47−51+60. |
[16] | 张晋霞, 牛福生. 响应曲面法优化赤铁矿絮凝体浮选行为研究[J]. 矿产综合利用, 2021(3): 22−26+38. ZHANG J X, NIU F S. Study on optimization of hematite floc flotation behavior by response surface method[J]. Comprehensive Utilization of Minerals, 2021(3): 22−26+38. |
Result of particle size analysis of tailings
Floc observation device diagram
Effect of FeCl3 dosage on the fractal dimension and particle size of floc
Effect of rotational speed on the fractal dimension and particle size of floc
Effect of stirring time on the fractal dimension and particle size of floc
Response surface of floc particle size
Response surface of the fractal dimension of the floc