Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

ZHAO Jiayi, WANG Xingxing, QI Lei, ZHAO Zhiqiang, WANG Feiwang, WEN Jinlei, DAI Huixin. Progress in the Theory and Technology of Highgradient Magnetic Separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 117-126. doi: 10.13779/j.cnki.issn1001-0076.2024.03.013
Citation: ZHAO Jiayi, WANG Xingxing, QI Lei, ZHAO Zhiqiang, WANG Feiwang, WEN Jinlei, DAI Huixin. Progress in the Theory and Technology of Highgradient Magnetic Separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 117-126. doi: 10.13779/j.cnki.issn1001-0076.2024.03.013

Progress in the Theory and Technology of Highgradient Magnetic Separation

More Information
  • Mechanical entrainment, magnetic entrainment and competitive capture occur in the separation process of high gradient magnetic separation, ultimately leading to a number of problems such as poor selectivity, clogging of the sorting chamber and low sorting efficiency. At present, the theoretical study of high gradient magnetic separation mainly focuses on particle force analysis and calculation, the construction of particle trajectory model and particle stacking model, and the research and development and optimisation of polymagnetic media. Based on the particle force, this paper analyses the causes of poor selectivity as well as low efficiency through the particle stacking model and trajectory model, and reviews the development and optimization of matrix, aiming to provide a reference for the optimization and theoretical research of high-gradient magnetic separation technology in industrial applications, as well as looking forward to the future trend of theoretical research of high-gradient magnetic separation technology.

  • 加载中
  • [1] DAI P, TAO M, LI X. Effect of lime (CaOH+) on chalcopyrite−arsenopyrite separation in high gradient magnetic separation: Experiment and molecular simulation[J]. Separation and Purification Technology, 2024, 333: 2−7.

    Google Scholar

    [2] HU Z, HAN L, LU D, et al. Pulsation curves strengthen the high gradient magnetic separation process Ⅱ: Consideration of separation performance[J]. Minerals Engineering, 2024, 205: 108480−108490. doi: 10.1016/j.mineng.2023.108480

    CrossRef Google Scholar

    [3] LI W, SUN J, ZHANG X, et al. Influence of the screw−thread rod matrix on the magnetic capture behavior of bastnaesite[J]. Powder Technology, 2024, 440: 119738−119752. doi: 10.1016/j.powtec.2024.119738

    CrossRef Google Scholar

    [4] LIN H , LI X , LEI Z, et al. Developing high gradient magnetic separators for greener production: Principles, design, and optimization[J]. Journal of Magnetism and Magnetic Materials, 2023: 587.

    Google Scholar

    [5] ZHENG X, WANG Y, LU D. A realistic description of influence of the magnetic field strength on high gradient magnetic separation[J]. Minerals Engineering, 2015, 79: 94−101. doi: 10.1016/j.mineng.2015.06.004

    CrossRef Google Scholar

    [6] WATSON JHP, LI Z. A study on mechanical entrapment in HGMS and vibration HGMS[J]. Minerals Engineering, 1991, 4(7/8/9/10/11): 815−823.

    Google Scholar

    [7] HU Z, LIU J, GAN T, et al. High−intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium−ion batteries[J]. Separation and Purification Technology, 2022, 297: 121486−121499. doi: 10.1016/j.seppur.2022.121486

    CrossRef Google Scholar

    [8] XUE Z, WANG Y, ZHENG X, et al. Mechanical entrainment study by separately collecting particle deposit on matrix in high gradient magnetic separation[J]. Minerals Engineering, 2022, 178: 107435−10746. doi: 10.1016/j.mineng.2022.107435

    CrossRef Google Scholar

    [9] XIONG D, LIU S, CHEN J. New technology of pulsating high gradient magnetic separation[J]. International Journal of Mineral Processing, 1998, 54(2): 111−127. doi: 10.1016/S0301-7516(98)00009-X

    CrossRef Google Scholar

    [10] SVOBODA J. The effect of magnetic field strenght on the efficiency of magnetic separation[J]. Minerals Engineering, 1994, 7(5): 747−757.

    Google Scholar

    [11] ZHENG X, WANG Y, LU D. Investigation of the particle capture of elliptic cross−sectional matrix for high gradient magnetic separation[J]. Powder Technology, 2016, 297: 303−310. doi: 10.1016/j.powtec.2016.04.032

    CrossRef Google Scholar

    [12] ZHENG X, XUE Z, WANG Y, et al. Modeling of particle capture in high gradient magnetic separation: A review[J]. Powder Technology, 2019, 352: 159−169. doi: 10.1016/j.powtec.2019.04.048

    CrossRef Google Scholar

    [13] HU Z, LU D, ZHENG X, et al. Development of a high−gradient magnetic separator for enhancing selective separation: A review[J]. Powder Technology, 2023, 421: 118435−118445. doi: 10.1016/j.powtec.2023.118435

    CrossRef Google Scholar

    [14] CHEN L. Effect of magnetic field orientation on high gradient magnetic separation performance[J]. Minerals Engineering, 2011, 24(1): 88−90. doi: 10.1016/j.mineng.2010.09.019

    CrossRef Google Scholar

    [15] HU Z. Model of particle accumulation on matrices in transverse field pulsating high gradient magnetic separator[J]. Minerals Engineering, 2020, 146: 106105−106116. doi: 10.1016/j.mineng.2019.106105

    CrossRef Google Scholar

    [16] DAHE X. Dynamic analysis of weakly magnetic mineral particles in high gradient magnetic field of rod medium[J]. Metal Mine, 1998, 8: 9−12.

    Google Scholar

    [17] YING T Y, YIACOUMI S, TSOURIS C. High−gradient magnetically seeded filtration[J]. Chemical Engineering Science, 2000, 55(6): 1101−1113. doi: 10.1016/S0009-2509(99)00383-8

    CrossRef Google Scholar

    [18] JOSHI J B, NANDAKUMAR K, PATWARDHAN A W, et al. Computational fluid dynamics[M]//Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment. Elsevier, 2019, 21−138.

    Google Scholar

    [19] NESSET J, FINCH J. The static (buildup) model of particle accumulation on single wires in high gradient magnetic separation: Experimental confirmation[J]. IEEE Trans Magn, 1981, 17(4): 1506−1509. doi: 10.1109/TMAG.1981.1061242

    CrossRef Google Scholar

    [20] WATSON J H P, LI Z. Theoretical and single−wire studies of vortex magnetic separation[J]. Minerals Engineering, 1992, 5(10/11/12): 1147−1165. doi: 10.1016/0892-6875(92)90156-4

    CrossRef Google Scholar

    [21] XUE Z, WANG Y, ZHENG X, et al. Role of gravitational force on mechanical entrainment of nonmagnetic particles in high gradient magnetic separation[J]. Minerals Engineering, 2022, 186: 107726−107735. doi: 10.1016/j.mineng.2022.107726

    CrossRef Google Scholar

    [22] 许金越, 王伊琳, 宋少先. 干式振动高梯度磁选机的分选机理与试验研究[J]. 金属矿山, 2023(2): 189−195.

    Google Scholar

    XU J Y, WANG Y L, SONG S X. Sorting mechanism and experimental study of dry vibrating high gradient magnetic separator[J]. Metal Mine, 2023(2): 189−195.

    Google Scholar

    [23] WATSON J H P. Magnetic filtration[J]. Journal of Applied Physics, 1973, 44(9): 4209−4213. doi: 10.1063/1.1662920

    CrossRef Google Scholar

    [24] WATSON J H P. Theory of capture of particles in magnetic high−intensity filters[J]. IEEE Transactions on Magnetics, 1975, 11(5): 1597−1599. doi: 10.1109/TMAG.1975.1058807

    CrossRef Google Scholar

    [25] LUBORSKY F, DRUMMOND B. High gradient magnetic separation: Theory versus experiment[J]. IEEE Trans. Magn, 1975, 6: 1696−1700.

    Google Scholar

    [26] BADESCU, V, ROTARIU, et al. Magnetic capture modelling for a transversal high filter[J]. International Journal of Applied Electromagnetics and Mechanics, 1996, 7: 57−67.

    Google Scholar

    [27] EBNER NA, GOMES CSG, HOBLEY TJ, et al. Filter capacity predictions for the capture of magnetic microparticles by high−gradient magnetic separation[J]. IEEE Trans Magn, 2007, 43(5): 1941−1949. doi: 10.1109/TMAG.2007.892080

    CrossRef Google Scholar

    [28] GE W, ENCINAS A, ARAUJO E, et al. Magnetic matrices used in high gradient magnetic separation (HGMS): A review[J]. Results in Physics, 2017, 7: 4278−4286. doi: 10.1016/j.rinp.2017.10.055

    CrossRef Google Scholar

    [29] LESLIE B W. Magnetic separator: CAD715885[P]. CA715885A[2024−06−16].

    Google Scholar

    [30] SVOBODA J, FUJITA T. Recent developments in magnetic methods of material separation[J]. Minerals Engineering, 2003, 16(9): 785−792. doi: 10.1016/S0892-6875(03)00212-7

    CrossRef Google Scholar

    [31] SVOBODA J. Magnetic techniques for the treatment of materials[M]. Springer Netherlands, 2004.

    Google Scholar

    [32] KOLM H H. Process for magnetic separation: US3676337D[P]. 2024−03−24.

    Google Scholar

    [33] 李文博, 韩跃新, 汤玉和, 等. 高梯度磁选机聚磁介质的研究概况及发展趋势[J]. 金属矿山, 2012, 41(9): 129−133. doi: 10.3969/j.issn.1001-1250.2012.09.035

    CrossRef Google Scholar

    LI W B, HAN Y X, TANG Y H, et al. Research overview and development trend of matrix for high gradient magnetic separator[J]. Metal Mine, 2012, 41(9): 129−133. doi: 10.3969/j.issn.1001-1250.2012.09.035

    CrossRef Google Scholar

    [34] 白江虎, 李具仓, 张志刚, 等. 聚磁介质用不锈导磁材料开发[J]. 中国冶金, 2017, 27(12): 4.

    Google Scholar

    BAI J H, LI J C, ZHANG Z G, et al. Development of Stainless Conductive Materials for matrix[J]. China Metallurgy, 2017, 27(12): 4.

    Google Scholar

    [35] GRAHAM MD. A precaution on using 316L stainless wire in HGMS matrices[J]. Magnetic Separation News, 1986, 2(2): 91−94. doi: 10.1155/1986/75394

    CrossRef Google Scholar

    [36] WU W, WU C, HONG PKA, LIN C. Capture of metallic copper by high gradient magnetic separation system[J]. Environmental Technology, 2011, 32(13): 1427−1433. doi: 10.1080/09593330.2010.538439

    CrossRef Google Scholar

    [37] 黄燕, 李思媛. 一种铁钴合金/氮共掺杂碳气凝胶电极材料的制备方法: CN02010498865.0[P].[2024−06−16]

    Google Scholar

    HUANG Y, LI S Y. Preparation of an iron−cobalt alloy/nitrogen co−doped carbon aerogel electrode material: CN02010498865.0[P]. [2024−06−16].

    Google Scholar

    [38] ZHENG X, WANG Y, LU D, et al. Theoretical and experimental study on elliptic matrices in the transversal high gradient magnetic separation[J]. Minerals Engineering, 2017, 111: 68−78. doi: 10.1016/j.mineng.2017.06.007

    CrossRef Google Scholar

    [39] BADESCU V, MURARIU V, ROTARIU O, et al. A new modeling of the initial buildup evolution on a wire in an axial HGMF filter[J]. Journal of Magnetism and Magnetic Materials, 1996, 163(1/2): 225−231. doi: 10.1016/S0304-8853(96)00319-8

    CrossRef Google Scholar

    [40] ZHENG X, WANG Y, LU D. Study on capture radius and efficiency of fine weakly magnetic minerals in high gradient magnetic field[J]. Minerals Engineering, 2015, 74: 79−85. doi: 10.1016/j.mineng.2015.02.001

    CrossRef Google Scholar

    [41] 李文博, 汤玉和, 韩跃新, 等. 聚磁介质对高梯度磁选效果的影响[J]. 金属矿山, 2013, 42(12): 105−107.

    Google Scholar

    LI W B, TANG Y H, HAN Y X, et al. Influence of matrix on the effectiveness of high gradient magnetic separation[J]. Metal Mine, 2013, 42(12): 105−107.

    Google Scholar

    [42] 于洪军, 王忠生, 李东, 等. 聚磁介质充填率对齐大山选矿厂赤铁矿高梯度强磁选的影响[J]. 金属矿山, 2017(12): 4. doi: 10.3969/j.issn.1001-1250.2017.12.024

    CrossRef Google Scholar

    YU H J, WANG Z S, LI D, et al. Influence of matrix filling rate on high gradient strong magnetic separation of hematite in Qidashan processing plant[J]. Metal Mine, 2017(12): 4. doi: 10.3969/j.issn.1001-1250.2017.12.024

    CrossRef Google Scholar

    [43] CHEN L, LIU W, ZENG J, et al. Quantitative investigation on magnetic capture of single wires in pulsating HGMS[J]. Powder Technology, 2017, 313: 54−59. doi: 10.1016/j.powtec.2017.03.011

    CrossRef Google Scholar

    [44] REN L, ZENG S, ZHANG Y. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software[J]. International Journal of Mining Science and Technology, 2015, 25(3): 479−487. doi: 10.1016/j.ijmst.2015.03.024

    CrossRef Google Scholar

    [45] ZHENG X, GUO N, CUI R, et al. Magnetic Field simulation and experimental tests of special cross−section shape matrices for high gradient magnetic separation[J]. IEEE Transactions on Magnetics, Published online 2017, 53(3): 1−10.

    Google Scholar

    [46] XUE Z, WANG Y, ZHENG X, et al. Particle capture of special cross−section matrices in axial high gradient magnetic separation: A 3D simulation[J]. Separation and Purification Technology, 2020, 237: 116375−116386. doi: 10.1016/j.seppur.2019.116375

    CrossRef Google Scholar

    [47] LI W, ZHOU L, HAN Y, et al. Numerical simulation and experimental verification for magnetic field analysis of thread magnetic matrix in high gradient magnetic separation[J]. Powder Technology, 2019, 355: 300−308. doi: 10.1016/j.powtec.2019.07.024

    CrossRef Google Scholar

    [48] LI W, SUN J, ZHANG X, et al. Influence of the screw−thread rod matrix on the magnetic capture behavior of bastnaesite[J]. Powder Technology, 2024, 440: 1197738−1197749.

    Google Scholar

    [49] 黄建雄. 高梯度磁选过程的棒介质排列组合研究[D]. 昆明: 昆明理工大学, 2013.

    Google Scholar

    HUANG J X. Study of matrix arrangement combinations for high gradient magnetic separation processes [D]. Kunming: Kunming University of Science and Technology, 2013.

    Google Scholar

    [50] CHEN L, DING L, ZHANG H, et al. Slice matrix analysis for combinatorial optimization of rod matrix in PHGMS[J]. Minerals Engineering, 2014, 58: 104−107. doi: 10.1016/j.mineng.2014.01.024

    CrossRef Google Scholar

    [51] CHEN L Z, XU G D, WEN S M, et al. Effect of rod arrangement in matrix on high gradient magnetic separation performance[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 3351−3354. doi: 10.4028/www.scientific.net/AMR.634-638.3351

    CrossRef Google Scholar

    [52] 丁利. 高梯度磁选过程的组合式棒介质研究[D]. 昆明: 昆明理工大学, 2014

    Google Scholar

    DING L. Study of combined matrix for high gradient magnetic separation processes[D]. Kunming: Kunming University of Science and Technology, 2014

    Google Scholar

    [53] 舒有顺, 曾海鹏, 黄红军. 六偏磷酸钠对钾长石和赤铁矿的分散作用机理[J]. 矿冶工程, 2023, 43(2): 61−65. doi: 10.3969/j.issn.0253-6099.2023.02.014

    CrossRef Google Scholar

    SHU Y, ZENG H, HUANG H. Dispersion mechanism of sodium hexametaphosphate on potassium feldspar and hematite[J]. Mimimg And Metallurgical Engeering, 2023, 43(2): 61−65. doi: 10.3969/j.issn.0253-6099.2023.02.014

    CrossRef Google Scholar

    [54] 许耀群, 李曙光, 王娟, 等. 超声波及分散剂对纳米SiO2/CaCO3/Al2O3颗粒分散特性的影响[J]. 材料导报, 2018, 32(S1): 300−304.

    Google Scholar

    XU Y Q, LI S G, WANG J, et al, Effect of dispersion characteristics of Nano−SiO2/CaCO3/Al2O3 by ultrasonicand dispersants[J]. Materials Reports, 2018, 32(S1): 300−304.

    Google Scholar

    [55] HUANG Z, LIN M, QIU R, et al. A novel technology of recovering magnetic micro particles from spent lithium−ion batteries by ultrasonic dispersion and waterflow−magnetic separation[J]. Resources Conservation and Recycling, 2021, 164(3): 105172−105181.

    Google Scholar

    [56] 魏婷婷. 砂质高岭土选矿提纯试验研究[D]. 武汉: 武汉理工大学, 2009.

    Google Scholar

    WEI T T. Experimental study on the preparation and purification of sandy kaolinite [D]. Wuhan: Wuhan University of Technology, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1169) PDF downloads(612) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint