Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

LIU Jian Guo, DAI Huixin, YU Lili, FENG Jiaying, WANG Zaihua. Improvement of High Gradient Magnetic Separator with Horizontal Magnetic Field and Its Application for Ilmenite in Panxi Region[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 109-116. doi: 10.13779/j.cnki.issn1001-0076.2024.03.012
Citation: LIU Jian Guo, DAI Huixin, YU Lili, FENG Jiaying, WANG Zaihua. Improvement of High Gradient Magnetic Separator with Horizontal Magnetic Field and Its Application for Ilmenite in Panxi Region[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 109-116. doi: 10.13779/j.cnki.issn1001-0076.2024.03.012

Improvement of High Gradient Magnetic Separator with Horizontal Magnetic Field and Its Application for Ilmenite in Panxi Region

More Information
  • The High Gradient Magnetic Separator (HGMS) with a horizontal magnetic field has many characteristics, including resistance to corrosion of the magnetic system and a low propensity for the magnetic medium to become blocked. Consequently, the HGMS has a significant effect on the rough separation of ilmenite. However, the limited spacing of the magnetic system, the narrow width of the sorting ring, and the small volume of the magnetic medium result in low processing capacity and high energy consumption. Therefore, equipment improvements are necessary to enhance the processing capacity and reduce energy consumption. Based on the SSS−II−2750 horizontal magnetic field HGMS, the separation ring system was enhanced. The thickness of the separation ring was increased in the height direction of the magnetic system, and the inner and outer double rings were divided. The medium box equipped with a coarse medium rod in the inner ring adsorbed coarse grain and strong magnetic target minerals, while the medium box with a fine medium rod in the outer ring adsorbed fine grain and micro−fine grain with weak magnetic target minerals, achieving cascade sorting. At the same time, both inner and outer rings were equipped with ore unloading devices to realize layered ore unloading, effectively improving the ore unloading rate of the target minerals. The effect of the first stage roughing process of ilmenite in a titanium separation plant in the Panxi area was investigated. The improved HGMS with a horizontal magnetic field yielded titanium crude concentrates with a TiO2 grade of 18.55% and a recovery of 85.78%, under conditions of a magnetic field strength of 0.45 T, vertical ring speed of 6.2 r/min, stroke length of 10 mm, stroke frequency of 120 r/min, ore feed rate of 160 t/h, and raw ore TiO2 grade of 10.42%. Compared with the pre−improvement and vertical magnetic field, the improved HGMS achieved a similar titanium crude concentrate grade but increased the recovery rate by 8.43 and 13.63 percentage points, respectively. The improved HGMS with a horizontal magnetic field demonstrated a good sorting effect, and the lowest excitation energy consumption among the three devices (0.49 kWh/t). The research indicated that the improved equipment has a large processing capacity and low energy consumption, achieving the objective of equipment enhancement.

  • 加载中
  • [1] 熊大和. SLon立环脉动高梯度磁选机在多种金属矿选矿中的应用[J]. 矿产保护与利用, 2013(6): 51−56.

    Google Scholar

    XIONG D H. The application of SLon VPHGMS for processing several metallic ores[J]. Conservation and Utilization of Mineral Resources, 2013(6): 51−56.

    Google Scholar

    [2] 赵明, 黄雪平, 王丰雨. SSS新型高梯度磁选机的改进[J]. 金属矿山, 2011(4): 134−136.

    Google Scholar

    ZHAO M, HUANG X P, WANG F Y. Development of SSS type high gradient magnetic separator[J]. Metal Mine, 2011(4): 134−136.

    Google Scholar

    [3] 吴城材, 张超达, 钟森林, 等. ZQS型周期式高梯度磁选机在非金属矿除杂提质中的应用[J]. 材料研究与应用, 2017, 11(1): 47−50.

    Google Scholar

    WU C C, ZHANG C D, ZHONG S L, et al. Application of ZQS−type circle high gradient magnetic separator in ironremoval purification of non−metallic mine[J]. Materials Research and Application. 2017, 11(1): 47−50.

    Google Scholar

    [4] 熊大和. SLon−3000高梯度磁选机的研制与应用[J]. 金属矿山, 2013(12): 100−104.

    Google Scholar

    XIONG D H. Development and application of SLon−3000 vertical ring and pulsating high gradient magnetic separator[J]. Metal Mine, 2013(12): 100−104.

    Google Scholar

    [5] 洪家凯. Slon立环脉动高梯度磁选机在金属矿选矿中的应用[J]. 矿产保护与利用, 1997(6): 20−22.

    Google Scholar

    HONG J K. Application of Slon veritic−ring pulsating HGMS in dressing of metallic ores[J]. Conservation and Utilization of Mineral Resources, 1997(6): 20−22.

    Google Scholar

    [6] 王丰雨, 杨招君, 罗荣飞, 等. 采用ZQS高梯度磁选机提高超细粒级(−38μm)钛铁矿回收效果[J]. 金属矿山, 2019(8): 93−97.

    Google Scholar

    WANG F Y, YANG Z J, LUO R F, et al. Recovery increase of −38 μm ultra fine ilmenite using ZQS high gradient magnetic separator[J]. Metal Mine, 2019(8): 93−97.

    Google Scholar

    [7] 刘建国, 张军, 汤玉和. 重、磁预选工艺在几种典型钛铁矿选矿工艺中的应用[J]. 矿产保护与利用, 2018(1): 96−100.

    Google Scholar

    LIU J G, ZHANG J, TANG Y H. Application of gravity and magnetic preconcentration process in the mineral processing of several typical ilmenite ores[J]. Conservation and Utilization of Mineral Resources, 2018(1): 96−100.

    Google Scholar

    [8] 李萌, 白丽梅, 谢杰. 从黑山铁矿中回收钛铁矿的试验研究[J]. 矿产保护与利用, 2013(4): 29−32.

    Google Scholar

    LI M, BAI L M, XIE J. Experimental study on flotation of ilmenite from Heishan iron ore[J]. Conservation and Utilization of Mineral Resources, 2013(4): 29−32.

    Google Scholar

    [9] 闫伟平, 李维斯, 杨耀辉, 等. 攀西地区超微细粒级钛铁矿资源选矿工艺研究[J]. 矿产综合利用, 2023(4): 55−61.

    Google Scholar

    YAN W P, LI W S, YANG Y H, et al. Research on mineral processing technology of ultrafine ilmenite resources in Panzhihua−Xichang area[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 55−61.

    Google Scholar

    [10] 汤玉和. SSS−Ⅱ湿式双频脉冲双立环高梯度磁选机的研制[J]. 金属矿山, 2004(3): 37−39.

    Google Scholar

    TANG Y H. Development of SSS−Ⅱ wet type double frequency pulsation double vertical ring high gradient magnetic separator[J]. Metal Mine, 2004(3): 37−39.

    Google Scholar

    [11] 赵明, 何健全, 许丽敏. SSS−Ⅱ型立环脉动高梯度磁选机磁介质棒排布方式的研究[J]. 矿山机械, 2009, 37(19): 97−99.

    Google Scholar

    ZHAO M, HE J Q, XU L M. Research on the arrangement style of magnetic rod of the SSS−Ⅱ type vertical ring and pulsating high gradient magnetic separator[J]. Mining & Processing Equipment, 2009, 37(19): 97−99.

    Google Scholar

    [12] 张军. SSS−Ⅱ高梯度磁选机回收微细粒钛铁矿的研究[J]. 材料研究与应用, 2012, 6(3): 195−197.

    Google Scholar

    ZHANG J. Research on recycling micro−grained ilmenite using SSS−Ⅱ HGMS [J]. Materials Research and Application, 2012, 6(3): 195−197.

    Google Scholar

    [13] 王丰雨, 谭世国, 赵明, 等. SSS−Ⅱ水平磁系场高梯度磁选机及其在密地选钛厂的应用[J]. 金属矿山, 2014(2): 122−126.

    Google Scholar

    WANG F Y, TAN S G, ZHAO M, et al. Development of SSS−Ⅱ horizontal magnetic field high gradient magnetic separator and its application in Panzhihua Midi titanium plant[J]. Metal Mine, 2014(2): 122−126.

    Google Scholar

    [14] 张军, 汤玉和, 李文博. SSS−Ⅱ型高梯度磁选机在承德钛铁矿生产中的应用[J]. 有色金属(选矿部分), 2011年(增刊1): 174−176+183.

    Google Scholar

    ZHANG J, TANG Y H, LI W B. Application of SSS−Ⅱ high gradient magnetic separator in Chengde Ti−Fe mine[J]. Nonferrous Metals (Mineral Processing Section), 2011 (Supplement 1): 174−176+183.

    Google Scholar

    [15] 胡厚勤, 张红英. 水平磁系高梯度磁选机回收攀西钛铁矿试验研究[J]. 钢铁钒钛, 2019, 40(6): 73−76+128. doi: 10.7513/j.issn.1004-7638.2019.06.015

    CrossRef Google Scholar

    HU H Q, ZHANG H Y. Experimental study on the recovering ilmenite from Iron tailings in Panzhihua−Xichang area by high gradient magnetic separator with a horizontal magnetic system[J]. Iron Steel Vanadium Titanium, 2019, 40(6): 73−76+128. doi: 10.7513/j.issn.1004-7638.2019.06.015

    CrossRef Google Scholar

    [16] 孟聪, 李丽匣, 申帅平, 等. 某钛铁矿分级磁选分级浮选试验研究[J]. 矿产保护与利用, 2017(1): 59−63.

    Google Scholar

    MENG C, LI L X, SHEN S P, et al. Experiments on classified magnetic separation−classified flotation for a ilmenite[J]. Conservation and Utilization of Mineral Resources, 2017(1): 59−63.

    Google Scholar

    [17] 邓建, 杨耀辉, 严伟平, 等. 攀西某超微细粒物料中钛铁矿选矿回收实验研究[J]. 矿产综合利用, 2023(1): 27−34.

    Google Scholar

    DENG J, YANG Y H, YAN W P, et al. Recovery of ilmenite from an ultrafine fine particle material in Panxi[J]. Multipurpose Utilization of Mineral Resources, 2023(1): 27−34.

    Google Scholar

    [18] 杨永涛, 张渊, 张俊辉. 四川某钒钛磁铁矿选铁尾矿选钛试验研究[J]. 矿产保护与利用, 2012(2): 32−36. doi: 10.3969/j.issn.1001-0076.2012.02.009

    CrossRef Google Scholar

    YANG Y T, ZHANG Y, ZHANG J H. Experimental research on ilmenite beneficiation for tailings after titanomagnetite recovery from a vanadic titanomagnetite ore in Sichuan[J]. Conservation and Utilization of Mineral Resources, 2012(2): 32−36. doi: 10.3969/j.issn.1001-0076.2012.02.009

    CrossRef Google Scholar

    [19] 张松, 文书明, 刘建, 等. 微细粒钛铁矿选矿技术研究进展[J]. 矿产保护与利用, 2019, 39(1): 131−137.

    Google Scholar

    ZHANG S, WEN S M, LIU J, et al. Research on mineral processing status of fine ilmenite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 131−137.

    Google Scholar

    [20] 王丽娟, 张超达, 陈俊明, 等. 反式水平磁场立环高梯度磁选机的研制及应用[J]. 现代矿业, 2017(6): 165−166+170. doi: 10.3969/j.issn.1674-6082.2017.06.047

    CrossRef Google Scholar

    WANG L J, ZHANG C D, CHEN J M, et al. Development and application of reverse horizontal magnetic field vertical ring high gradient magnetic separator[J]. Modern Mining, 2017(6): 165−166+170. doi: 10.3969/j.issn.1674-6082.2017.06.047

    CrossRef Google Scholar

    [21] 徐少华, 林恬盛. 立环高梯度磁选机线圈的冷却方式与特点[J]. 现代矿业, 2017(4): 222−224. doi: 10.3969/j.issn.1674-6082.2017.04.065

    CrossRef Google Scholar

    XU S H, LIN T S. Cooling method and characteristics of coil of vertical ring high gradient magnetic separator[J]. Modern Mining, 2017(4): 222−224. doi: 10.3969/j.issn.1674-6082.2017.04.065

    CrossRef Google Scholar

    [22] 宁宇, 储炜, 李明晶. 水平磁系高梯度磁选机精矿管堵塞原因分析与改造[J]. 现代矿业, 2020(5): 182−184. doi: 10.3969/j.issn.1674-6082.2020.05.055

    CrossRef Google Scholar

    NING Y, CHU W, LI M J. Cause analysis and transformation of concentrate pipe blockage of horizontal magnetic system high gradient magnetic separator[J]. Modern Mining, 2020(5): 182−184. doi: 10.3969/j.issn.1674-6082.2020.05.055

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(6)

Article Metrics

Article views(604) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint