Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

CAO Mengbing, ZENG Jianwu, YU Weijun, CHEN Luzheng. Development Status and Prospect of Spiral Concentrator Separation Technology[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 127-134. doi: 10.13779/j.cnki.issn1001-0076.2024.03.014
Citation: CAO Mengbing, ZENG Jianwu, YU Weijun, CHEN Luzheng. Development Status and Prospect of Spiral Concentrator Separation Technology[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 127-134. doi: 10.13779/j.cnki.issn1001-0076.2024.03.014

Development Status and Prospect of Spiral Concentrator Separation Technology

More Information
  • Spiral concentrator separation is a resorting method using flow membrane gravity and inclined flow sorting, which has the advantages of large processing capacity, low energy consumption, no pollution, high separation efficiency and wide separation range, and is widely used in the field of mineral processing. This paper deeply expounds the key technical problems of the spiral concentrator and the characteristics of different types of spiral concentrator. At the same time, this paper also systematically combs the motion state of the spiral concentrator flow membrane, the particle movement trajectory and the optimal design of the groove surface. Finally, the application of spiral concentrator separation technology is summarized and the development trend of this technology is discussed. The content of this article can provide reference for the development of spiral concentrator separation technology.

  • 加载中
  • [1] VEIGA M M, GUNSON A J. Gravity concentration in artisanal gold mining[J]. Minerals, 2020, 10(11): 1026. doi: 10.3390/min10111026

    CrossRef Google Scholar

    [2] 曾安, 周源, 余新阳, 等. 重力选矿的研究现状与思考[J]. 中国钨业, 2015(4): 42−47.

    Google Scholar

    ZENG A, ZHOU Y, YU X Y, et al. The ways out and development trends of gravity separation under current position[J]. China Tungsten Industry, 2015(4): 42−47.

    Google Scholar

    [3] SADEGHI M, BAZIN C, RENAUD M. Radial distribution of iron oxide and silica particles in the reject flow of a spiral concentrator[J]. International Journal of Mineral Processing, 2016, 153: 51−59. doi: 10.1016/j.minpro.2016.06.003

    CrossRef Google Scholar

    [4] ROBBEN C, WOTRUBA H. Sensor based ore sorting technology in mining past, present and future[J]. Minerals (Basel), 2019, 9(9): 523.

    Google Scholar

    [5] 台恒心, 黄超群. 国外多头螺旋选矿机的新设计[J]. 国外金属矿选矿, 1984(4): 16−20.

    Google Scholar

    TAI H X, HUANG C Q. New design of foreign multi head spiral concentrator[J]. Foreign Metal Ore Mineral Processing, 1984(4): 16−20.

    Google Scholar

    [6] MISHRA B K, TRIPATHY A. A preliminary study of particle separation in spiral concentrators using DEM[J]. International Journal of Mineral Processing, 2010, 94(3/4): 192−195.

    Google Scholar

    [7] M M D, G R R. Improved gravity separation systems utilizing spiral separators corporating new design parameters and features, 2003[C].

    Google Scholar

    [8] 杨杰. 尖缩溜槽在含金尾矿资源回收中的应用[J]. 湖南有色金属, 2023, 39(2): 22−24.

    Google Scholar

    YANG J. Application of sharp shrink concentrator in resource recovery of gold bearing tailings[J]. Hunan Nonferrous Metals, 2023, 39(2): 22−24.

    Google Scholar

    [9] 刘惠中. BL1500−A型螺旋溜槽的研制及其在尾矿再选中的应用[J]. 矿冶, 2001(4): 24−28.

    Google Scholar

    LIU H Z. Development of BL1500−A spiral concentrator and its application in tailings retreament[J]. Mining & Metallurgy, 2001(4): 24−28.

    Google Scholar

    [10] 刘惠中. BL1500螺旋溜槽的研制及应用[J]. 有色金属(选矿部分), 2000(3): 29−32.

    Google Scholar

    LIU H Z. BL1500 Development and application of the spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2000(3): 29−32.

    Google Scholar

    [11] 王家明, 赫荣安. 来复条螺旋溜槽的研制及分选机理的探讨[J]. 金属矿山, 1989(3): 44−49+64.

    Google Scholar

    WANG J M, HE R A. The development of the repeated spiral concentrator and the sorting mechanism[J]. Metal Mine, 1989(3): 44−49+64.

    Google Scholar

    [12] 侯柱山, 邝代岗. 旋转螺旋溜槽在宜春钽铌矿的应用[J]. 有色金属(选矿部分), 1993(2): 29−30.

    Google Scholar

    HOU Z S, KUANG D G. Application of rotating spiral concentrator tantalum niobium mine in Yichun[J]. Nonferrous Metals(Mineral Processing Section), 1993(2): 29−30.

    Google Scholar

    [13] 刘仁梁. 应用旋转螺旋溜槽改造宜春钽泥矿车间工艺流程的生产实践[J]. 新疆有色金属, 1998(3): 17−22.

    Google Scholar

    LIU R L. The production practice of transforming the process flow of Yichun tantalum niobium mine by applying rotating spiral concentrator[J]. Xinjiang Nonferrous Metals, 1998(3): 17−22.

    Google Scholar

    [14] Turner J. Gravity concentration, past, present and future[J]. Minerals Engineering, 1991(4): 213−223.

    Google Scholar

    [15] 侯玉茂, 刘翔, 王震, 等. 螺旋分选机+TBS干扰床分选机联合工艺在炼焦煤选煤厂的应用[J]. 煤炭加工与综合利用, 2023(3): 31−33.

    Google Scholar

    HOU Y M, LIU X, ZWANG Z, et al. Application of spiral concentrator and TBS interferential bed separator combined process in coking coal preparation plant[J]. Coal Processing & Comprehensive Utilization, 2023(3): 31−33.

    Google Scholar

    [16] 高淑玲, 孟令国, 魏德洲, 等. 下斜角对螺旋溜槽流场特征的影响[J]. 有色金属(选矿部分), 2020(1): 82−90.

    Google Scholar

    GAO S L, MENG L G, WEI D Z, et al. Influence of downward bevel angle on the flow field characteristics of spirals[J]. Nonferrous Metals(Mineral Processing Section), 2020(1): 82−90.

    Google Scholar

    [17] 王光庆. 药剂及格条作用下煤泥螺旋溜槽分选规律研究[D]. 太原: 太原理工大学, 2015.

    Google Scholar

    WANG G Q. Study on separation law of the slurry spiral concentrator under the function of reagent and riffes[D]. Taiyuan: Taiyuan University of Technology, 2015.

    Google Scholar

    [18] KATWIKA C N, KIME M, KALENGA P N M, et al. Application of knelson concentrator for beneficiation of copper−cobalt ore tailings[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40(1): 35−45. doi: 10.1080/08827508.2018.1481057

    CrossRef Google Scholar

    [19] MAHARAJ L, LOVEDAY B K, POCOCK J. Gravity separation of a UG−2 ore secondary sample for the reduction of chromite minerals[J]. Minerals Engineering, 2012, 30: 99−101. doi: 10.1016/j.mineng.2012.02.014

    CrossRef Google Scholar

    [20] 刘惠中, 吴华冬. 螺旋选矿设备的应用现状及展望[J]. 有色金属(选矿部分), 2022(5): 151−158.

    Google Scholar

    LIU H Z, WU H D. Application and prospect of spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 151−158.

    Google Scholar

    [21] 李华梁. CFD技术应用于螺旋选矿机结构优化的研究[D]. 赣州: 江西理工大学, 2016.

    Google Scholar

    LI H L. CFD technology is applied to the structure optimization of spiral concentrator[D]. Ganzhou: Jiangxi University of Science and Technology, 2016.

    Google Scholar

    [22] 时盆青. 选煤厂中螺旋溜槽重选技术应用与改造[J]. 江西煤炭科技, 2023(1): 194−195+198.

    Google Scholar

    SHI P Q. Application and transformation of spiral concentrator for gravity separation in coal preparation plant[J]. Jiangxi Coal Science & Technology, 2023(1): 194−195+198.

    Google Scholar

    [23] 李斌, 刘学海. 多段螺旋溜槽的研究[J]. 矿冶, 1995: 214−221.

    Google Scholar

    LI B, LIU X H. Study of a multisegment spiral concentrator[J]. Mining&Metallurgy, 1995: 214−221.

    Google Scholar

    [24] 王绍岩. 螺旋溜槽的设计计算与应用[J]. 机械管理开发, 2021, 36(8): 8−9.

    Google Scholar

    WANG S Y. Design calculation and application of a spiral concentrator[J]. Mechanical Management and Development, 2021, 36(8): 8−9.

    Google Scholar

    [25] 刘惠中, 李华梁, 格海超. BL1500螺旋溜槽在承德某铁矿铁精矿再选中的应用[J]. 有色金属工程, 2016(1): 45−48.

    Google Scholar

    LIU H Z, LI H L, GE H C. Application of BL1500 spiral concentrator to iron ore concentrate recleaning in a Iron mine of chengde[J]. Nonferrous Metals Engineering, 2016(1): 45−48.

    Google Scholar

    [26] 王普蓉, 徐国印, 苏刚. 昌宁含铁低品位高泥锡石矿重磁选工艺研究[J]. 矿产综合利用, 2022(1): 136−141.

    Google Scholar

    WANG P R, XU G Y, SU G. Study on gravity and magnetic separation process of an iron containing low grade and high slime tin ore in Changning[J]. Multipurpose Utilization of Mineral Resources, 2022(1): 136−141.

    Google Scholar

    [27] 张一敏, 刘惠中. 超极限h/D螺旋溜槽的研究及应用[J]. 矿产综合利用, 2000(5): 43−46.

    Google Scholar

    ZHANG Y M, LIU H Z. Development and application of out limited h/D helical concentrator[J]. Multipurpose Utilization of Mineral Resources, 2000(5): 43−46.

    Google Scholar

    [28] 李作敏, 冯安生, 张颖新, 等. 复合力场螺旋溜槽的流场特性及应用[J]. 矿产综合利用, 2021(6): 164−167+143.

    Google Scholar

    LI Z M, FENG A S, ZHANG Y X, et al. Flow field characteristics and application tests of spiral concentrator with compound force field[J]. Multipurpose Utilization of Mineral Resources, 2021(6): 164−167+143.

    Google Scholar

    [29] 秦亚国. 铁矿石选矿技术发展与研究−评《磁电选矿》[J]. 有色金属(选矿部分), 2022(5): 177.

    Google Scholar

    QIN Y G. Development and research of iron ore beneficiation technology review of magneto electric beneficiation[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 177.

    Google Scholar

    [30] YAVUZ C T, PRAKASH A, MAYO J T, et al. Magnetic separations: From steel plants to biotechnology[J]. Chemical Engineering Science, 2009, 64(10): 2510−2521. doi: 10.1016/j.ces.2008.11.018

    CrossRef Google Scholar

    [31] 伍喜庆, 黄志华. 磁力螺旋溜槽及其对细粒磁性物料的回收[J]. 中南大学学报(自然科学版), 2007, 38(6): 1083−1087.

    Google Scholar

    WU X Q, HUANG Z H. Magnetic spiral concentrator and its application in recovery of fine magnetic materials[J]. Journal of Central South University(Science and Technology), 2007, 38(6): 1083−1087.

    Google Scholar

    [32] 马丁内斯E, 斯皮勒DE, 张光烈. 重力−磁力分选法−用重力分选法回收磁性和弱磁性矿物[J]. 国外金属矿山, 1991(12): 59−61.

    Google Scholar

    MARTINEZ E, SPILLER D E, ZHANG G L. Gravity magnetic separation recovery of magnetic and weak magnetic minerals by gravity separation[J]. Foreign metal mines, 1991(12): 59−61.

    Google Scholar

    [33] 陈晓鸣, 严鹏, 陈力行. 磁性螺旋溜槽回收细粒钛铁矿试验[J]. 金属矿山, 2014(3): 132−135.

    Google Scholar

    CHENG X M, YAN P, CHENG L X. Experiments on fine ilmenite recovery with magnetic spiral concentrator[J]. Metal Mine, 2014(3): 132−135.

    Google Scholar

    [34] 徐镜潜, 陈庭中, 彭建平, 等. 离心螺旋溜槽流膜特性的研究[J]. 有色金属, 1983(2): 37−47.

    Google Scholar

    XU J Q, CHEN T Z, PENG J P, et al. Study of the characteristics of centrifugal spiral groove flow membrane[J]. Nonferrous Metals Engineering, 1983(2): 37−47.

    Google Scholar

    [35] 李彩, 刘洋. 离心振动螺旋溜槽在昆钢大红山选矿厂应用[J]. 现代矿业, 2011, 27(4): 108−109.

    Google Scholar

    LI C, LIU Y. The centrifugal vibration spiral concentrator is applied in dahongshan dressing ator of Kunming steel[J]. Modern mining, 2011, 27(4): 108−109.

    Google Scholar

    [36] 张立. 耦合GIS与CFD应用潜力与面临挑战的探讨[J]. 科技视界, 2014(29): 162−279.

    Google Scholar

    ZHANG L. Discussion on the application potential and challenges of coupling GIS and CFD[J]. Science & Technology Vision, 2014(29): 162−279.

    Google Scholar

    [37] JEONG S W. The effect of grain size on the viscosity and yield stress of fine grained sediments[J]. Journal of mountain science, 2014, 11(1): 31−40. doi: 10.1007/s11629-013-2661-1

    CrossRef Google Scholar

    [38] BOISVERT L, SADEGHI M, BAZIN C. Investigation of residence time and fluid volume in spiral concentrators[J]. Minerals Engineering, 2023, 202: 108−272.

    Google Scholar

    [39] DIXIT P, TIWARI R, MUKHERJEE A K, et al. Application of response surface methodology for modeling and optimization of spiral separator for processing of iron ore slime[J]. Powder Technology, 2015, 275: 105−112. doi: 10.1016/j.powtec.2015.01.068

    CrossRef Google Scholar

    [40] ANKIREDDY P R, PURUSHOTHAM S, NARASIMHA M. Fluid flow modeling and analysis of low and high gravity spiral concentrators: experimental and analytical approaches[J]. Chemical Engineering & Technology, 2023, 46(8): 1619−1629.

    Google Scholar

    [41] 孟令国, 高淑玲, 周孝洪, 等. 入口流量对螺旋溜槽首圈流场演变及矿物颗粒分布的影响[J]. 东北大学学报(自然科学版), 2023, 44(6): 856−862.

    Google Scholar

    MENG L G, GAO S L, ZHOU X H, et al. Influence of the inlet flow rate on flow field evolution and mineral particle distribution in the first turn of spiral concentrator[J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 856−862.

    Google Scholar

    [42] 袁俊, 高淑玲, 孟令国, 等. 螺旋溜槽内二次环流分布特性及其分选作用研究进展[J]. 有色金属(选矿部分), 2021(2): 29−35+43.

    Google Scholar

    YUAN J, GAO S L, MENG L G, et al. Research progress on secondary circulation distribution and separation in spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2021(2): 29−35+43.

    Google Scholar

    [43] 王韬, 郭晨阳, 孟令国, 等. 断面曲线函数对Φ600螺旋溜槽内水流场特性的影响[J]. 有色金属(选矿部分), 2021(6): 174−180+188.

    Google Scholar

    WANG T, GUO C Y, MENG L G, et al. Influence of cross sectional curves function on the flow field characteristics in spirals with diameter of 600 mm[J]. Nonferrous Metals(Mineral Processing Section), 2021(6): 174−180+188.

    Google Scholar

    [44] 吴华冬. 螺旋溜槽主要结构参数对分选流态及矿物分选行为的影响[D]. 赣州: 江西理工大学, 2022.

    Google Scholar

    WU H D. Effect of main structural parameters of spiral concentrator on sorting flow state and mineral sorting behavior[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    Google Scholar

    [45] 高淑玲, 魏德洲, 崔宝玉, 等. 基于CFD的螺旋溜槽流场及颗粒运动行为数值模拟[J]. 金属矿山, 2014(11): 121−126.

    Google Scholar

    GAO S L, WEI D Z, CUI B Y, et al. CFD based numerical simulation of flow field of and particles motion behavior in spiral[J]. Metal Mine, 2014(11): 121−126.

    Google Scholar

    [46] 刘祚时, 赵南琪, 刘惠中, 等. 螺旋溜槽分选流场中矿粒运动轨迹研究[J]. 中国钨业, 2016, 31(5): 66−71.

    Google Scholar

    LIU Z S, ZHAO N Q, LIU H Z, et al. Mineral particles trajectory of spiral concentrator separating flow field[J]. China Tungsten Industry, 2016, 31(5): 66−71.

    Google Scholar

    [47] 高淑玲, 孟令国, 周孝洪, 等. 给料参数对螺旋溜槽内流层铺展及颗粒分离行为的影响[J]. 有色金属(选矿部分), 2022(5): 137−143+158

    Google Scholar

    GAO S L, MENG L G, ZHOU X H, et al. Effect of feed parameters on flow spreading and particle separation behavior in spirals[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 137−143+158.

    Google Scholar

    [48] 高淑玲, 孟令国, 魏德洲, 等. 螺旋溜槽流场特性与分离性能研究进展[J]. 矿产保护与利用, 2020, 40(1): 166−171.

    Google Scholar

    GAO S L, MENG L G, WEI D Z, et al. Research advance of flow characteristics in spirals and its separation performance[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 166−171.

    Google Scholar

    [49] 杨钟秀. 螺旋溜槽的螺旋槽横截面特性[J]. 有色金属(冶炼部分), 1977(8): 33−35.

    Google Scholar

    YANG Z X. Spiral groove cross section characteristics of the spiral concentrator[J]. Nonferrous Metals(Extractive Metallurgy), 1977(8): 33−35.

    Google Scholar

    [50] 韩彬, 张亮亮, 贾素娥. 新型螺旋溜槽选别微细粒锡矿试验初探[J]. 世界有色金属, 2018(10): 76−78.

    Google Scholar

    HAN B, ZHANG L L, JIA S E. Study on new spiral concentrator selected for fine grained tin ore[J]. World Nonferrous Metals, 2018(10): 76−78.

    Google Scholar

    [51] 王光庆, 樊民强. 格条对螺旋溜槽分选效果影响试验研究[J]. 中国矿业, 2016, 25(3): 162−166.

    Google Scholar

    WANG G Q, FAN M Q. Experimental study on influence of riffles on the separation effect of spiral concentrator[J]. China Mining Magazine, 2016, 25(3): 162−166.

    Google Scholar

    [52] 高淑玲, 周孝洪, 王乾, 等. 粗糙壁面螺旋溜槽中矿浆流场参数及颗粒分离行为演变特性[J]. 矿产保护与利用, 2023, 43(3): 127−136.

    Google Scholar

    GAO S L, ZHOU X H, WANG Q, et al. Evolution characteristic of slurry flow field parameters and particles separation behavior in spirals with rough wall[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 127−136.

    Google Scholar

    [53] 周孝洪, 高淑玲, 孟令国, 等. 壁面粗糙度对螺旋溜槽中矿浆流动及颗粒分离行为的影响[J]. 东北大学学报(自然科学版), 2023, 44(12): 1769−1777.

    Google Scholar

    ZHOU X H, GAO S L, MENG L G, et al. Influence of Wall Roughness on slurry flow and particles separation behaviors in spirals[J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1769−1777.

    Google Scholar

    [54] 初福栋, 季安坤, 姜程阳. 精矿冲洗水对螺旋溜槽提品效果影响试验研究[J]. 矿山机械, 2024, 52(1): 49−52.

    Google Scholar

    CHU F D, JI A K, JIANG C Y. Experimental study on effect of ore concentrate flushing water on grade improvement of spiral concentrator[J]. Mining & Processing Equipment, 2024, 52(1): 49−52.

    Google Scholar

    [55] 刘惠中, 朱合钧, 芮作为, 等. 流动阻力对螺旋溜槽分选流场的影响[J]. 有色金属(选矿部分), 2024(3): 107−114.

    Google Scholar

    LIU H Z, ZHU H J, RUI Z W, et al. Effect of flow resistance on the flow field of spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2024(3): 107−114.

    Google Scholar

    [56] 范象波, 王家明. 螺旋溜槽在鞍山地区铁矿选矿中的应用[J]. 金属矿山, 1988(2): 50−54.

    Google Scholar

    FAN X B, WANG J M. Application of spiral concentrator in iron ore dressing in Anshan area[J]. Metal Mine, 1988(2): 50−54.

    Google Scholar

    [57] 何德庆, 牛福生. 滦县司家营贫赤铁矿选矿试验研究[J]. 金属矿山, 2009(1): 69−73.

    Google Scholar

    HE D Q, NIU F S. Experimental study on mineral processing of Sijiaying in Luanxian County[J]. METAL MINE, 2009(1): 69−73.

    Google Scholar

    [58] 罗光明. 安徽某镜铁矿选厂用螺旋溜槽优化选矿工艺[J]. 现代矿业, 2020, 36(8): 157−159.

    Google Scholar

    LUO G M. The dressing process is optimized by spiral concentrator in a mirror iron ore dressing plant in Anhui Province[J]. Modern Mining, 2020, 36(8): 157−159.

    Google Scholar

    [59] 张汉平, 刘玫华, 陈献梅. 云南某红土型风化钛砂矿选矿工艺研究[J]. 有色金属(选矿部分), 2013(4): 30−34.

    Google Scholar

    ZHANG H P, LIU M H, CHEN X M. Research on mineral processing process of a weathered titanium ore of Yunnan[J]. Nonferrous Metals(Mineral Processing Section), 2013(4): 30−34.

    Google Scholar

    [60] 梁焘茂, 王丰雨, 张超达, 等. 攀西某钒钛磁铁矿尾矿选钛试验[J]. 钢铁钒钛, 2021, 42(2): 103−108. doi: 10.7513/j.issn.1004-7638.2021.02.018

    CrossRef Google Scholar

    LIANG T M, WANG C D, ZHANG C D, et al. Experimental study on separating ilmenite from a tailing of vanadium bearing titanomagnetite ore in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 103−108. doi: 10.7513/j.issn.1004-7638.2021.02.018

    CrossRef Google Scholar

    [61] 李月旺, 王海霞, 李树军, 等. 研山铁矿磁铁矿石磁重联选工艺可行性研究与实践[J]. 现代矿业, 2020, 36(10): 240−241+248.

    Google Scholar

    LI Y W, WANG H X, LI S J, et al. Feasibility study and practice of magnetic recombination process of magnetite in Yanshan iron ore[J]. Modern Mining, 2020, 36(10): 240−241+248.

    Google Scholar

    [62] 田树国, 崔立凤. 某低品位难选钨锡矿石选矿试验研究[J]. 中国钨业, 2021, 36(4): 55−59+64.

    Google Scholar

    TIAN S G, CUI L F. Experimental study on beneficiation of a low grade refractory tungsten tin ore[J]. China Tungsten Industry, 2021, 36(4): 55−59+64.

    Google Scholar

    [63] 黄俊玮, 王守敬, 李洪潮, 等. 新疆某低品位磷灰石型磷矿浮选试验研究[J]. 金属矿山, 2022(3): 137−142.

    Google Scholar

    HUANG J W, WANG S G, LI H C, et al. Experimental study on flotation of phosphorite ore from a low grade apatite deposit in xinjiang[J]. Metal Mine, 2022(3): 137−142.

    Google Scholar

    [64] 刘鑫, 张一敏, 刘涛, 等. 湖北某云母型含钒石煤重浮联合预抛尾试验[J]. 金属矿山, 2017(5): 93−98.

    Google Scholar

    LIU X, ZHANG Y M, LIU T, et al. Joint pre throwing test of mica−containing coal in Hubei province[J]. Metal Mine, 2017(5): 93−98.

    Google Scholar

    [65] 孙小乐, 南凯, 睢月婷, 等. 螺旋溜槽摇床联选对气化渣提碳行为研究[J]. 中国矿业, 2023, 32(12): 235−241.

    Google Scholar

    SUN X L, NAN K, SUI Y T, et al. Study on carbon extraction from gasification slag by spiral concentrator and table concentrator combined separation[J]. China Mining Magazine, 2023, 32(12): 235−241.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(1605) PDF downloads(259) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint