Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

WU Yukai, WANG Guoqiang, ZHU Yangge, ZHAO Zhiqiang, XIAO Qingfei, LUO Sigang. Experimental Study on Medium Optimization and Reduction of Semi−Autogenous Grinding Hard Stone Accumulation Based on Grinding Parameters[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 102-108. doi: 10.13779/j.cnki.issn1001-0076.2024.03.011
Citation: WU Yukai, WANG Guoqiang, ZHU Yangge, ZHAO Zhiqiang, XIAO Qingfei, LUO Sigang. Experimental Study on Medium Optimization and Reduction of Semi−Autogenous Grinding Hard Stone Accumulation Based on Grinding Parameters[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 102-108. doi: 10.13779/j.cnki.issn1001-0076.2024.03.011

Experimental Study on Medium Optimization and Reduction of Semi−Autogenous Grinding Hard Stone Accumulation Based on Grinding Parameters

More Information
  • In response to the problems of hard rock accumulation and limited production capacity improvement in a large molybdenum mine using a semi−autogenous mill, the modified Azzaroni formula was used to accurately calculate the optimal steel ball diameter. Various crushing and grinding parameters obtained through different testing methods and compression experiments to measure hard rock particle size were incorporated into this calculation. The rationality was verified through laboratory experiments. The research results indicated that: (1) The crushing and grinding parameters obtained by the three testing methods consistently highlighted the difficult grinding and stripping characteristics of the ore, though variations in describing the impact resistance of the ore were observed; (2) The hard rock particle size of the ore was determined to be −80+20 mm; (3) The optimal steel ball scheme for a semi−autogenous mill was a 1∶1 mass ratio of 130 mm and 110 mm diameters. Using a single ball diameter of 130 mm with a 100 mm diameter as the self−grinding medium resulted in an 11.17% increase in production compared to the existing 120 mm ball diameter scheme in the selection plant, and a 1.67% decrease in the content of hard rock −80+20 mm. The content of+100 mm with a mixed ball diameter of 130 mm and 110 mm in a 1∶1 ratio increased by 1% compared to a single ball diameter of 130 mm, while the content of hard rock −80+20 mm decreased by 3.41%. This verified the accuracy of the calculated maximum steel ball diameter and achieved better grinding results using the mixed ball diameter scheme.

  • 加载中
  • [1] A. GUPTA, D. S. YAN. Chapter 9 − autogenous and semi−autogenous mills[M]. Elsevier B. V. , 2006.

    Google Scholar

    [2] 尤腾胜, 李兆峰, 何荣权. 半自磨系统顽石性质及其对系统产能的影响研究[J]. 中国矿山工程, 2023, 52(1): 72−77. doi: 10.3969/j.issn.1672-609X.2023.01.012

    CrossRef Google Scholar

    YOU T S, LI Z F, HE R Q. Research on the properties of hard stones in semi autogenous grinding systems and their impact on system capacity[J]. China Mining Engineering, 2023, 52(1): 72−77. doi: 10.3969/j.issn.1672-609X.2023.01.012

    CrossRef Google Scholar

    [3] 肖庆飞, 王国强, 杨芳, 等. 半自磨顽石做中矿再磨介质的应用研究[J]. 矿产保护与利用, 2017(3): 32−36.

    Google Scholar

    XIAO Q F, WANG G Q, YANG F, et al. Research on the application of semi autogenous grinding refractory stone as a medium for intermediate ore re grinding[J]. Mineral Protection and Utilization, 2017(3): 32−36.

    Google Scholar

    [4] 黄国智, 方启学, 任翔, 等. 全自磨半自磨磨矿技术[M]. 北京: 冶金工业出版社, 2018: 47−51.

    Google Scholar

    HUANG G Z, FANG Q X, REN X, et al. Fully and semi autogenous grinding[M]. Beijing: Metallurgical Industry Press, 2018: 47−51.

    Google Scholar

    [5] A. R. HASANKHOEI, M. MALEKI−MOGHADDAM, A. HAJI−ZADEH, et al. On dry SAG mills end liners: Physical modeling, DEM−based characterization and industrial outcomes of a new design[J]. Minerals Engineering, 2019, 141(C): 105835−105835.

    Google Scholar

    [6] VOGEL L , PEUKERT W . Determination of material properties relevant to grinding by practicable labscale milling tests[J]. International Journal of Mineral Processing, 2004, 74: S329−S338.

    Google Scholar

    [7] P. W. CLEARY, G. W. DELANEY, M. D. SINNOTT, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill[J]. Minerals Engineering, 2018, 128: 92−105. doi: 10.1016/j.mineng.2018.08.026

    CrossRef Google Scholar

    [8] R. D. MORRISON, P. W. CLEARY. Using DEM to model ore breakage within a pilot scale SAG mill[J]. Minerals Engineering, 2004, 17(11): 1117−1124.

    Google Scholar

    [9] P W. CLEARY, R. D. MORRISON, G. W. DELANEY. Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation[J]. Minerals Engineering, 2018, 12856−68.

    Google Scholar

    [10] 郜峰. 球磨机负荷监测软件平台的设计与开发[D]. 沈阳: 东北大学, 2010.

    Google Scholar

    GAO F. Design and development of a ball mill load monitoring software platform [D]. Shenyang: Northeastern University, 2010.

    Google Scholar

    [11] A GIBLETT, S MORRELL. Process development testing for comminution circuit design[J]. Minerals & Metallurgical Processing, 2016(4).

    Google Scholar

    [12] 谭文才, 刘俊, 夏林, 等. 给料粒度分布对半自磨机的影响[J]. 矿山机械, 2019, 47(11): 36−40. doi: 10.3969/j.issn.1001-3954.2019.11.009

    CrossRef Google Scholar

    TANG W C, LIU J, XIA L, et al. The influence of feed particle size distribution on semi autogenous grinding machines[J]. Mining Machinery, 2019, 47(11): 36−40. doi: 10.3969/j.issn.1001-3954.2019.11.009

    CrossRef Google Scholar

    [13] 王越, 苏祥玉, 邓海轩, 等. 某钼矿快捷提高半自磨处理量的有效途径[J]. 矿冶, 2022, 31(2): 47−52. doi: 10.3969/j.issn.1005-7854.2022.02.008

    CrossRef Google Scholar

    WANG Y, SU X Y, DENG H X, et al. An effective way to quickly increase the semi autogenous grinding processing capacity of a molybdenum mine[J]. Mining and Metallurgy, 2022, 31(2): 47−52. doi: 10.3969/j.issn.1005-7854.2022.02.008

    CrossRef Google Scholar

    [14] 国宏臣, 肖庆飞, 李云啸, 等. 基于离散元法的多级配球提高半自磨机磨矿效率研究[J]. 矿产保护与利用, 2023, 43(4): 60−67.

    Google Scholar

    GUO H C, XIAO Q F, LI Y X, et al. Research on improving the grinding efficiency of semi autogenous mills by multi−stage ball matching based on discrete element method[J]. Mineral Protection and Utilization, 2023, 43(4): 60−67.

    Google Scholar

    [15] 谢浩松, 肖庆飞, 张志鹏, 等. 云南某金矿半自磨钢球尺寸优化及离散元仿真模拟分析[J]. 矿产保护与利用, 2023, 43(1): 57−65.

    Google Scholar

    XIE H S, XIAO Q F, ZHANG Z P, et al. Size optimization and discrete element simulation analysis of semi autogenous grinding steel balls in a gold mine in Yunnan[J]. Mineral Protection and Utilization, 2023, 43(1): 57−65.

    Google Scholar

    [16] 国宏臣, 周强, 肖庆飞, 等. 勒洛四面体与传统磨矿介质对料层冲击破碎特性的对比研究[J]. 矿产保护与利用, 2023, 43(5): 107−113.

    Google Scholar

    GUO H C, ZHOU Q, XIAO Q F, et al. Comparative study on the impact crushing characteristics of material layers between Leluo tetrahedron and traditional grinding media[J]. Mineral Protection and Utilization, 2023, 43(5): 107−113.

    Google Scholar

    [17] SHI F , KOJOVIC T . Validation of a model for impact breakage incorporating particle size effect[J]. International Journal of Mineral Processing, 2006, 82(3): 156−163.

    Google Scholar

    [18] GROUP T & E C . From Single Particle Impact Behaviour to Modeling of Impact Mills[J]. Chemical Engineering & Technology: Industrial Chemistry −Plant Equipment −Process Engineering −Biotechnology, 2005, 28(10): 1077.

    Google Scholar

    [19] 王国强, 刘建远, 朱阳戈, 等. 基于矿石碎磨特性的设备选型及能耗分析[J]. 矿山机械, 2022, 50(1): 29−33. doi: 10.3969/j.issn.1001-3954.2022.01.007

    CrossRef Google Scholar

    WANG G Q, LIU J Y, ZHU Y G, et al. Equipment selection and energy consumption analysis based on ore crushing and grinding characteristics[J]. Mining Machinery, 2022, 50(1): 29−33. doi: 10.3969/j.issn.1001-3954.2022.01.007

    CrossRef Google Scholar

    [20] 周强, 汪轶凡, 肖庆飞, 等. 不规则铜钼矿颗粒断裂强度分布实验研究[J]. 矿产保护与利用, 2023, 43(4): 33−42.

    Google Scholar

    ZHOU Q, WANG Y F, XIAO Q F, et al. Experimental study on the distribution of fracture strength of irregular copper molybdenum ore particles[J]. Mineral Protection and Utilization, 2023, 43(4): 33−42.

    Google Scholar

    [21] 周强, 肖庆飞, 潘永泰. 挤压作用下脆性物料断裂强度分布研究[J]. 中国矿业大学学报, 2022, 51(6): 1086−1095. doi: 10.3969/j.issn.1000-1964.2022.6.zgkydxxb202206005

    CrossRef Google Scholar

    ZHOU Q, XIAO Q F, PAN Y T. Research on the distribution of fracture strength of brittle materials under compression[J]. Journal of China University of Mining and Technology, 2022, 51(6): 1086−1095. doi: 10.3969/j.issn.1000-1964.2022.6.zgkydxxb202206005

    CrossRef Google Scholar

    [22] L. M TAVARES, R. P KING. Single−particle fracture under impact loading[J]. Elsevier B. V. , 1998.

    Google Scholar

    [23] 骆忠, 肖庆飞, 方雨, 等. 基于钢球与矿石碰撞能量确定半自磨机钢球尺寸的方法: CN115138447A[P], 2022−10−04.

    Google Scholar

    LUO Z, XIAO Q F, FANG Y, et al. Method for determining the size of steel balls in semi−automatic mills based on the collision energy between steel balls and ores: CN115138447A[P], 2022−10−04.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(5)

Article Metrics

Article views(250) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint