Citation: | CHI Ru’an, WANG Nan, GUO Wenda, ZHANG Zhenyue, LIU Defeng, LI Xinyi. Flotation Performance of Bastnaesite with a Halogenated Lauric Acid Collector WN−01[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 74-81. doi: 10.13779/j.cnki.issn1001-0076.2024.01.010 |
In order to solve the problems of high cost, requiring large usage, toxicity, difficult to degrade and weak foaming ability for the hydroxamic acid collectors used in bastnaesite flotation, a new type of halogenated lauric acid collector WN−01 was developed and used as the collector for the flotation of the bastnaesite. The experimental results showed that compared to the pure lauric acid as the collector for bastnaesite flotation, the REO grade and recovery of concentrate obtained by the halogenated lauric acid collector WN−01 increased 4.45 percentage points and 36.86 percentage points, respectively. The suitable conditions for the bastnaesite flotation with collector WN−01 were a slurry pH of around 8.5, a pulp temperature of 30 ℃, a collector WN−01 dosage of 150 mg/L and a depressant water glass dosage of 120 mg/L. Under these conditions, an open circuit flotation process of 1 time roughing, 3 times concentrating, 2 times scavenging was used to treat the bastnaesite ore with a REO grade of 26.57%, the flotation concentrate of REO grade of 49.18% and REO recovery of 80.72% was obtained. The testing and analysis results of flotation product indicated that the flotation concentrate was mainly bastnaesite with minute quantity of fluorite. The flotation tailings were almost quartz and wollastonite. The above results revealed that the modified fatty acid collector WN−01 had excellent collecting ability and selectivity, which could replace the hydroxamic acid collectors in bastnaesite flotation to achieve green and efficient flotation processes.
[1] | 时晗, 何晓娟, 胡真, 等. 我国稀土矿选矿近十年研究现状及发展前景[J]. 有色金属(选矿部分)2021, (4): 18−25. SHI H, HE X J, HU Z, et al. Research status and development prospects of rare earth ore dressing in China in recent ten years[J]. Nonferrous Metals(mineral processing section), 2021, (4): 18−25. |
[2] | LIU Y, HOU Z, ZHANG Q, et al. Zircon U−Pb ages of the Mianning−Dechang syenites, Sichuan province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting−science direct[J]. Ore Geology Reviews, 2015, 64(8): 554−568. |
[3] | 胡朋, 刘国平, 江思宏, 等. 全球稀土矿床的主要类型和成因研究进展[J]. 矿产勘查, 2023, 14(5): 691−700. HU P, LIU G P, JIANG S H, et al. Main types and advances on ore genesis of REE deposits worldwide[J]. Mineral Exploration, 2023, 14(5): 691−700. |
[4] | YANG Y H, WU F Y, LI Q, et al. In situ U−Th−Pb dating and Sr−Nd isotope analysis of bastnaesite by LA−(MC)−ICP−MS[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 543−565. doi: 10.1111/ggr.12297 |
[5] | KUMRI A, PANDA R, JHA M K, et al. Process development to recover rare earth metals from monazite mineral: A review[J]. Minerals Engineering, 2015, 79(5): 102−115. |
[6] | 谢东岳, 伏彩萍, 唐忠阳, 等. 我国稀土资源现状与冶炼技术进展[J]. 矿产保护与利用, 2021, 41(1): 152−160. XIE D Y, FU C P, TANG Z Y, et al. Current status of rare earth resources in China and progress of extracting technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 152−160. |
[7] | 王威, 柳林, 刘红召, 等. 稀土资源提取技术进展及趋势[J]. 矿产保护与利用, 2020, 40(5): 32−36. WANG W, LIU L, LIU H Z, et al. Progress and trend of rare earth resources extraction technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 32−36. |
[8] | LI X C, YANG K F, SPADLER C, et al. The effect of fluid−aided modification on the Sm−Nd and Th−Pb geochronology of monazite and bastnaesite: implication for resolving complex isotopic age data in REE ore systems[J]. Geochimica et Cosmochimica Acta, 2021, 300(2): .1−24. |
[9] | 智文科,王飞,陈晓怡,等.钪的资源及提炼技术研究进展[J/OL].中国稀土学报: 2022, 1−27. http://kns.cnki.net/kcms/detail/11.2365.TG.20220825.1038.002.html. ZHI W K, WANG F, CHEN X Y, et al. Research progress of scandium resources and refining technology of scandium[J/OL]. Journal of the Chinese Society of Rare Earths: 2022, 1-27. http://kns.cnki.net/kcms/detail/11.2365.TG.20220825.1038.002.html. |
[10] | 彭美旺, 杨富强, 陈红康. 混浮—强磁法从某尾矿中回收稀土、萤石[J]. 铜业工程, 2021(3): 44−49. doi: 10.3969/j.issn.1009-3842.2021.03.012 PENG M W, YANG F Q, CHEN H K. Recovery of rare earth and fluorite from tailings by mixed flotation−high intensity magnetic method[J]. Copper Engineering, 2021(3): 44−49. doi: 10.3969/j.issn.1009-3842.2021.03.012 |
[11] | 徐金球, 徐晓军, 王景伟. 1−羟基2−萘甲羟肟酸的合成及对稀土矿物的捕收性能[J]. 有色金属, 2002(3): 72−73. XU J Q, XU X J, WANG J W. Synthesis of 1−hydroxy−2−naphthylhydroximic acid and application to collecting rare earth minerals[J]. Nonferrous Metals, 2002(3): 72−73. |
[12] | 梅建庭, 杨威, 刘养春, 等. 一种螯合型稀土捕收剂及其制备方法: CN114276276A[P]. 2022−04−05. MEI J T, YANG W, LIU Y C, et al. A chelating rare earth collector and its preparation method: CN114276276A[P]. 2022−04−05. |
[13] | 杨威, 梅建庭, 刘浩林, 等. 一种难选稀土矿捕收剂及其制备方法: CN113522533A[P]. 2021−10−22. YANG W, MEI J T, LIU H L, et al. A difficult to select rare earth ore collector and its preparation method: CN113522533A[P]. 2021−10−22. |
[14] | 王震,刘殿文,王亮,等.矿物型稀土捕收剂及其机理研究进展[J/OL].中国稀土学报, 2023, 1−16. http://kns.cnki.net/kcms/detail/11.2365.TG.20231123.1546.002.html. WANG Z, LIU D W, WANG L, et al. Research progress of collectors and flotation mechanism for rare earth mineral[J/OL]. Journal of the Chinese Society of Rare Earths, 2023, 1−16. http://kns.cnki.net/kcms/detail/11.2365.TG.20231123.1546.002.html. |
[15] | 邱显扬, 何晓娟, 饶金山, 等. 油酸钠浮选氟碳铈矿机制研究[J]. 稀有金属, 2013, 37(3): 422−428. doi: 10.3969/j.issn.0258-7076.2013.03.015 QIU X Y, HE X J, RAO J S, et al. Flotation mechanism of sodium oleate on bastnaesite[J]. Chinese Journal of Rare Metals, 2013, 37(3): 422−428. doi: 10.3969/j.issn.0258-7076.2013.03.015 |
[16] | PAVEZ O, BRANDAO P, PERES A. Adsorption of oleate and octyl−hydroxamate on to rare earths minerals[J]. Mine E, 1996, 9(3): 357−366. doi: 10.1016/0892-6875(96)00020-9 |
[17] | ZHOU F, WANG L X, XU Z H, et al. Interaction of reactive oily bubble in flotation of bastnaesite[J]. J. Rare E, 2014, 32(8): 772−778. doi: 10.1016/S1002-0721(14)60139-3 |
[18] | BALA RAMV. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285−1303. doi: 10.1016/j.gsf.2018.12.005 |
[19] | 毛英. 四川稀土矿(氟碳铈矿)稀土总量的测定方法[J]. 四川地质学报, 2000(1): 79−80. MAO Y. A method for determination of total REE in bastnaesite, Sichuan[J]. Acta Geologica Sichuan, 2000(1): 79−80. |
[20] | 孙立强. 氟碳铈矿钙化分解及浮选分离的研究[D]. 沈阳: 东北大学, 2019. SUN L Q. A Study on the technology calcification decomposition and flotation separation of bastnaesite concentrates[D]. Shenyang: Northeastern University, 2019. |
XRD pattern of primary ore and pre−enriched ore
Flow chart of flotation conditions tests
Effects of collector dosage on flotation behavior
Effects of water glass dosage on flotation behavior
Effects of pulp pH on flotation behavior
Effects of impeller rotational speed on flotation behavior
Effects of flotation time on flotation behavior
Effects of pulp temperature on flotation behavior
Open−circuit flotation test flow
XRD pattern of concentrate and tailings
Scanning electron microscope (a), EDS−Mapping (b), energy spectrum of A point (c), and energy spectrum of B point (d) of concentrate
Scanning electron microscope (a) and EDS−Mapping(b), (c), (d) of tailings