Citation: | JIANG Feng, HE Shuai, TANG Honghu, WU Yongan, HAN Yingjie, XU Shiming. Alkali−free Process for Enhancing the Flotation of Associated Silver in Yulong Lead−Zinc Ore with Modified Dithiophosphate−type Collector[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 67-73. doi: 10.13779/j.cnki.issn1001-0076.2024.01.009 |
Aiming at the low recovery of associated silver minerals during the flotation process of Yulong lead−zinc ore, a study on an alkali−free lead−silver flotation process with a novel collector was conducted. The research results indicated that, at a grinding fineness of −74 μm accounting for 65%, using sodium sulfite and zinc sulfate as depressants, and adopting the modified dithiophosphate−type collector CY−1, significantly enhanced the silver recovery in lead−silver concentrate under alkali−free conditions. Closed−circuit experiment of this process obtained the lead−silver concentrate with a lead grade of 52.05% and a silver grade of 4 866 g/t. The recovery rates for lead and silver were 91.76% and 84.43%, respectively. Compared to the high−alkali process using sodium diethyldithiocarbamate and ammonium dibutyl dithiophosphate as collectors, the lead and silver recovery rates increased by 2.5 and 6 percentage points, respectively. This process eliminates the depression of lime on silver minerals during the flotation process, contributing to the comprehensive recovery of rare precious metals associated with lead−zinc ore and enhancing the overall resource utilization efficiency.
[1] | 敖顺福. 铅锌矿选矿工艺、药剂及设备研究进展[J]. 矿产保护与利用, 2023(5): 146−162. AO S F. Research progress on beneficiation technology, chemicals and equipment of lead−zinc ore[J]. Conservation and Utilization of Mineral Resources, 2023(5): 146−162. |
[2] | 钱丽丹, 黄海威, 任嗣利. 氧化铅锌矿浮选研究现状[J]. 有色金属(选矿部分), 2023(5): 42−50. QIAN L D, HUANG H W, REN S L. Research status of lead−zinc oxide ore flotation[J], Nonferrous Metals (Mineral Processing Section), 2023 (5): 42−50. |
[3] | 赵娟. 铅锌矿床分类及研究现状[J]. 西部探矿工程, 2016, 28(10): 115−116+118. doi: 10.3969/j.issn.1004-5716.2016.10.035 ZHAO J. Classification and research status of lead−zinc deposits[J]. West−China Exploration Engineering, 2016, 28(10): 115−116+118. doi: 10.3969/j.issn.1004-5716.2016.10.035 |
[4] | 张艳, 韩润生, 魏平堂. 会泽超大型铅锌矿床成矿流体同位素示踪综述[J]. 地质学报, 2015, 89(S1): 242−244. ZHAO Y, HAN R S, WEI P T. A review on isotopic tracing of ore−forming fluids in Huize super large lead−zinc deposit[J]. Acta Geologica Sinica, 2015, 89(S1): 242−244. |
[5] | 祝干. 湖南宝山铜铅锌多金属矿床构造−蚀变分带规律及构造找矿模型[D]. 昆明: 昆明理工大学, 2023. ZHU G. Structure−alteration zoning and tectonic prospecting model of the Baoshan copper−lead−zinc polymetallic deposit in Hu ’nan Province[D]. Kunming: Kunming University of Science and Technology, 2023. |
[6] | 任飞, 李志锋, 胡志刚, 等. 内蒙古某含银铜铅锌多金属硫化矿石选矿试验研究[J]. 黄金, 2021, 42(8): 61−66. REN F, LI Z F, HU Z G, et al. Experimental study on beneficiation of a silver−bearing copper−lead−zinc polymetallic sulfide ore in Inner Mongolia[J]. Gold, 2021, 42(8): 61−66. |
[7] | 李洁, 李英, 宁新霞. 某含银铅锌矿强化铅锌分离和提高银回收率选矿试验研究[J]. 有色金属(选矿部分), 2015(5): 20−23. LI J, LI Y, NING X X. Experimental study on separation of lead and zinc and improvement of silver recovery in a silver bearing lead−zinc mine[J]. Nonferrous Metals (Mineral Processing Section), 2015(5): 20−23. |
[8] | QING W, HE M, CHEN Y. Improvement of flotation behavior of Mengzi lead−silver−zinc ore by pulp potential control flotation[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 949−954. doi: 10.1016/S1003-6326(08)60164-8 |
[9] | 刘洋, 童雄, 吕晋芳, 等. 硫化铅锌矿物浮选分离研究进展[J]. 矿产保护与利用, 2022, 42(3): 106−114. LIU Y, TONG X, LV J F, et al. Research progress in flotation separation of lead−zinc sulfide minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 106−114. |
[10] | 谢贤, 童雄, 王成行, 等. 某难选高硫铅锌矿的选矿工艺试验研究[J]. 矿产保护与利用, 2010(1): 37−40. doi: 10.3969/j.issn.1001-0076.2010.01.010 XIE X, TONG X, WANG C X, et al. Experimental study on beneficiation technology of a refractory high sulfur lead−zinc ore[J]. Conservation and Utilization of Mineral Resources, 2010(1): 37−40. doi: 10.3969/j.issn.1001-0076.2010.01.010 |
[11] | 刘运财, 邬顺科, 张康生. 凡口铅锌矿近十年选矿技术进展[J]. 矿冶工程, 2007(4): 39−41. doi: 10.3969/j.issn.0253-6099.2007.04.010 LIU Y C, WU S K, ZHANG K S. Progress of mineral processing technology in Fankou lead−zinc mine in recent ten years[J]. Mining and Metallurgical Engineering, 2007(4): 39−41. doi: 10.3969/j.issn.0253-6099.2007.04.010 |
[12] | 陈倩文, 艾光华, 罗丽芳, 等. 某伴生银铅锌矿低碱浮选试验研究[J]. 矿冶工程, 2018, 38(6): 60−63. doi: 10.3969/j.issn.0253-6099.2018.06.013 CHEN Q W, AI G H, LUO L F, et al. Experimental study on low alkali flotation of an associated silver lead−zinc ore[J]. Mining and Metallurgical Engineering, 2018, 38(6): 60−63. doi: 10.3969/j.issn.0253-6099.2018.06.013 |
[13] | 黄晓锋. 某复杂银铅锌矿浮选分离试验研究[J]. 矿产保护与利用, 2016(4): 23−27. HUANG X F. Experimental study on flotation separation of a complex silver lead−zinc ore[J]. Conservation and Utilization of Mineral Resources, 2016(4): 23−27. |
[14] | 谭欣, 王中明, 肖巧斌, 等. 银铅无碱混选工艺分选含银低品位铅锌硫化矿石[J]. 矿产保护与利用, 2021, 41(2): 89−98. TAN X, WANG Z M, XIAO Q B, et al. Separation of low grade lead−zinc sulfide ore containing silver by alkali free mixing process[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 89−98. |
[15] | 鲁新州, 林东建, 曲思思, 等. 某铅锌银多金属矿浮选试验研究[J]. 黄金, 2023, 44(8): 58−62. doi: 10.11792/hj20230812 LU X Z, LIN D J, QU S S, et al. Experimental study on flotation of a lead−zinc−silver polymetallic ore[J]. Gold, 2023, 44(8): 58−62. doi: 10.11792/hj20230812 |
[16] | 聂世华. 某铅锌矿床伴生金银在精矿产品中的分布及药剂制度优化试验[J]. 矿冶工程, 2023, 43(3): 79−83. doi: 10.3969/j.issn.0253-6099.2023.03.018 NIE S H. Distribution of associated gold and silver in concentrate products and optimization of chemical regime for a lead−zinc deposit[J]. Mining and Metallurgical Engineering, 2023, 43(3): 79−83. doi: 10.3969/j.issn.0253-6099.2023.03.018 |
[17] | 胡晓星, 朱阳戈, 郑桂兵. 含银硫化铅锌矿浮选工艺研究[J]. 中国矿业, 2020, 29(9): 110−115. doi: 10.12075/j.issn.1004-4051.2020.09.016 HU X X, ZHU Y G, ZHENG G B. Study on flotation technology of silver bearing lead−zinc sulfide ore[J]. China Mining Magazine, 2020, 29(9): 110−115. doi: 10.12075/j.issn.1004-4051.2020.09.016 |
[18] | 夏青, 欧阳辉, 梁菁菁. 硫化铅锌矿浮选分离研究进展[J]. 矿冶, 2018, 27(2): 9−14. doi: 10.3969/j.issn.1005-7854.2018.02.003 XIA Q, OU YANG H, LIANG J J. Research progress of flotation separation of lead−zinc sulfide ore[J]. Mining and Metallurgy, 2018, 27(2): 9−14. doi: 10.3969/j.issn.1005-7854.2018.02.003 |
[19] | NAYAK A, JENA M S, MANDRE N R. Beneficiation of lead−zinc ore–a review[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(5): 564−583. doi: 10.1080/08827508.2021.1903459 |
Microscope images of Yulong lead−zinc ore (Sp—sphalerite, Fre—reibergite, Po—pyrrhotite, Gn—galena, G—gangue)
Flowsheet of condition tests for lead−silver rougher flotation
Effect of grinding fineness on lead and silver (a) grade and (b) recovery of lead−silver rougher concentrate
Effect of collector types on (a) lead grade and (b) lead and silver recovery of lead−silver rougher concentrate
Effect of CY−1 dosage on (a) lead grade and (b) lead and silver recovery of lead−silver rougher concentrate
Effect of lime dosage on (a) lead grade and (b) lead and silver recovery in lead−silver rougher concentrate
Closed−circuit test flowsheet for lead−silver flotation under alkali−free condition