Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 1
Article Contents

WANG Shaoxing, NING Guodong, LIU Yingzhi, LI Yanjun. Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2024.01.011
Citation: WANG Shaoxing, NING Guodong, LIU Yingzhi, LI Yanjun. Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2024.01.011

Dephosphorization of a High−phosphorus Iron Ore by Magnetic Roasting−leaching Process

More Information
  • In response to the characteristics of high-phosphorus iron ore, which the complex symbiotic relationship between iron minerals and phosphate minerals in high-phosphorus iron ore and the difficulty in efficient utilization through conventional beneficiation methods. The roasting -leaching technology for iron extraction and phosphorus reduction was proposed with a view to achieving efficient utilization of high-phosphorus iron ore. This paper investigated a high-phosphorus certain iron ore with a TFe grade 60.81%, FeO content14.92%, and P content 0.71% extracted from Algeria. The experimental study on iron extraction and dephosphorization was carried out by oxidizing roasting-magnetization roasting-magnetic separation-leaching process. The magnetic roasting process conditions of oxidation temperature 1 050 °C, reduction temperature 520 °C, reduction time 25 min and H2 concentration 50% were determined. The iron concentrate indexes of total Fe grade 65.50%, total Fe recovery 96.31% and P content 0.16% were obtained, which 77.46% of P removed. The experimental results offer guidance for iron extraction and dephosphorization of iron ore in Algeria.

  • 加载中
  • [1] 白春霞, 李宏静. 高磷鲕状赤铁矿脱磷选矿工艺现状分析[J]. 现代矿业, 2021, 37(1): 117−119+125.

    Google Scholar

    BAI C X, LI H J. Research status analysis of dephosphorization mineral processing of high phosphorus oolitic hematite[J]. Modern Mining, 2021, 37(1): 117−119+125.

    Google Scholar

    [2] 丁湛, 文书明, 李春龙, 等. 铁矿石脱磷硫工艺现状及同步脱除新方法[J]. 矿产综合利用, 2020, 3(3): 56−62+32.

    Google Scholar

    DING Z, WEN S M, LI C L, et al. Current status of iron ore dephosphorization and desulphurization process and a new method for simultaneous removal[J]. Multipurpose Utilization of Mineral Resources, 2020, 3(3): 56−62+32.

    Google Scholar

    [3] 许言, 孙体昌, 杨志超, 等. 尼日利亚某高磷铁矿石工艺矿物学研究[J]. 中国矿业, 2012, 21(4): 89−93.

    Google Scholar

    XU Y, SUN T C, YANG Z H, et al. Process mineralogy study on some high phosphorous iron ore in Nigeria[J]. China Mining Magazine, 2012, 21(4): 89−93.

    Google Scholar

    [4] 刘东泉, 李文博, 韩跃新, 等. 阿尔及利亚某高磷鲕状赤铁矿工艺矿物学研究[J]. 矿冶工程, 2020, 40(4): 65−68+74. doi: 10.3969/j.issn.0253-6099.2020.04.016

    CrossRef Google Scholar

    LIU D Q, LI W B, HAN Y X, et al. Process mineralogy of high−phosphorus oolitic hematite from Algeria[J]. Mining and Metallurgical Engineering, 2020, 40(4): 65−68+74. doi: 10.3969/j.issn.0253-6099.2020.04.016

    CrossRef Google Scholar

    [5] 齐冰力, 路明, 何志军, 等. SiO2对高磷鲕状赤铁矿碳热还原过程中铁磷物相转变规律研究[J]. 矿产保护与利用, 2022, 42(5): 95−103.

    Google Scholar

    QI B L, LU M, HE Z J, et al. Study on phase transformation of iron and phosphorus by SiO2, during carbon thermareduction of high−phosphorus oolitic hematite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 95−103.

    Google Scholar

    [6] 吴世超, 孙体昌, 寇珏, 等. 组合脱磷剂对高磷铁矿还原焙烧−磁选的影响[J]. 东北大学学报(自然科学版), 2022, 43(3): 423−430.

    Google Scholar

    WU S C, SUN T C, KOU J, et al. Effects of combined dephosphorization agents on reduction roasting−magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 423−430.

    Google Scholar

    [7] XU C Y, SUN T C, KOU J, et al. Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11): 2806−2812. doi: 10.1016/S1003-6326(11)61536-7

    CrossRef Google Scholar

    [8] 吴世超, 孙体昌, 寇珏. CaCO3和Na2CO3在高磷鲕状铁矿氧化焙烧−气基还原中的作用[J]. 中南大学学报(自然科学版), 2022, 53(4): 1157−1166.

    Google Scholar

    WU S C, SUN T C, KOU J. The function of CaCO3 and Na2CO3 in the oxidation roasting and gas−based reduction forhigh phosphorus oolitic iron ore[J]. Journal of Central South University(Science and Technology), 2022, 53(4): 1157−1166.

    Google Scholar

    [9] 吴世超, 高瑞琢, 孙体昌, 等. 某高磷铁矿氧化焙烧−气基还原−磁选研究[J]. 矿产综合利用. 2024, 45(1): 144−148 doi: 10.3969/j.issn.1000-6532.2024.01.018.

    Google Scholar

    WU S C, GAO R Z, SUN T C, et al. Study on oxidation roasting, gas−based reduction followed bymagnetic separationof ahigh phosphorus lron ore [J]. Multipurpose Utilization of Mineral Resources. 2024, 45(1): 144−148 doi: 10.3969/j.issn.1000-6532.2024.01.018.

    Google Scholar

    [10] 李育彪, 龚文琪, 辛桢凯, 等. 鄂西某高磷鲕状赤铁矿磁化焙烧及浸出除磷试验[J]. 金属矿山, 2010, 5(5): 64−67.

    Google Scholar

    LI Y B, GONG W Q, XIN Z Q, et al. Research on magnetic roasting and leaching dephosphorization of high−phosphorus oolitie hematite in Western Hubei[J]. Metal Mine, 2010, 5(5): 64−67.

    Google Scholar

    [11] SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot−scale study[J]. Journal of Cleaner Production, 2020, 261: 1−9.

    Google Scholar

    [12] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot−scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J]. Resources Conservation and Recycling, 2021, 172: 1−10.

    Google Scholar

    [13] YUAN S, WANG R F, GAO P, et al. Suspension magnetization roasting on waste ferromanganese ore: a semi−industrial test for efficient recycling of value minerals[J]. Powder Technology, 2022, 396: 80−91. doi: 10.1016/j.powtec.2021.10.048

    CrossRef Google Scholar

    [14] YUAN S, ZHOU W T, HAN Y X, et al. Efficient enrichment of low−grade refractory rhodochrosite by preconcentration−neutral suspension roasting−magnetic separation process[J]. Powder Technology, 2020, 361: 529−539. doi: 10.1016/j.powtec.2019.11.082

    CrossRef Google Scholar

    [15] ZHANG X L, HAN Y X, SUN Y S, et al. Innovative utilization of refractory iron ore via suspension magnetization roasting: a pilot−scale study[J]. Powder Technology, 2019, 352: 16−24. doi: 10.1016/j.powtec.2019.04.042

    CrossRef Google Scholar

    [16] CHENG C Y, MISRA V N, CLOUGH J, et al. Dephosphorisation of western Australian iron ore by hydrometallurgical process[J]. Minerals Engineering, 1999, 12(9): 1083−1092. doi: 10.1016/S0892-6875(99)00093-X

    CrossRef Google Scholar

    [17] WU S, SUN T, KOU J, et al. A new iron recovery and dephosphorization approach from high−phosphorus oolitic iron ore via oxidation roasting−gas−based reduction and magnetic separation process[J]. Powder Technology, 2023, 413: 1−15.

    Google Scholar

    [18] SUN Y, ZHANG X, HAN Y, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: a pilot−scale study[J]. Powder Technology, 2020, 361: 571−580. doi: 10.1016/j.powtec.2019.11.076

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(340) PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint