Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

WANG Jizhen, JING Maochen, LIU Ruihua, HAN Shuo. Theoretical Analysis of Flotation Reagent Performance[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002
Citation: WANG Jizhen, JING Maochen, LIU Ruihua, HAN Shuo. Theoretical Analysis of Flotation Reagent Performance[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002

Theoretical Analysis of Flotation Reagent Performance

  • The influence of flotation regulators (such as lime, sodium sulfide, sodium cyanide and metal ion activator) on mineral flotation and the relationship between collector structure and performance were studied. The results showed that solubility product criterion and frontier orbital energy level parameters could be used to analyze the properties or structure-activity relationship of flotation reagents, but should be paid attention to the study of mineral surface properties, non-valence bond factors of flotation reagent properties and mineral-reagent interaction mechanism. By examining mineral surface features, it has been determined that selective depression or activation of minerals by flotation regulator (such as sodium sulfide, sodium cyanide, copper and lead metal ions) had a certain relationship with the valence electron configuration of mineral lattice metal, which was consistent with or supplementary to the results of solubility product criterion analysis. The interaction mechanism between minerals and reagents was examined using the solubility product criterion and frontier orbital energy level parameters were used to study the relationship between hydrocarbon group structure and xanthate properties. As a result, the primary and secondary relationships of hydrophobic factors, valence bond factors and spatial geometric effects of xanthate’s alkyl group structure on collecting performance were obtained. In conclusion, it is difficult to fully explain the performance of flotation reagents with a single theoretical parameter. The establishment of the coupled theoretical analysis system for reagent performance should be one of the key focuses of future research.

  • 加载中
  • [1] 王淀佐. 浮选剂作用原理与应用[M]. 北京: 冶金工业出版社, 1983.

    Google Scholar

    WANG D Z. Principles and applications of flotation reagents[M]. Beijing: Metallurgical Industry Press, 1983.

    Google Scholar

    [2] 林强, 王淀佐. 浮选药剂的活性—选择性原理[J]. 有色金属, 1990(4): 32−37.

    Google Scholar

    LIN Q, WANG D Z. Principle of reactivity and selectivity of flotation reagent[J]. Nonferrous Metals, 1990(4): 32−37.

    Google Scholar

    [3] PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110.

    Google Scholar

    [4] LIU G, LIU J, HUANG Y, et al. New advances in the understanding and development of flotation collectors: A Chinese experience[J]. Minerals Engineering, 2018, 118: 78−86. doi: 10.1016/j.mineng.2018.01.009

    CrossRef Google Scholar

    [5] 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106.

    Google Scholar

    CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106.

    Google Scholar

    [6] LIU G Y, YANG X L, ZHONG H. Molecular design of flotation collectors: a recent progress[J]. Adv Colloid Interfac, 2017, 246: 181−195. doi: 10.1016/j.cis.2017.05.008

    CrossRef Google Scholar

    [7] 孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    CrossRef Google Scholar

    SUN W, HU Y H, QIU G Z, et al. Kinetic simulation of ion adsorption on sphalerite (110) Surface[J]. The Chinese Journal of Nonferrous Metals, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    CrossRef Google Scholar

    [8] 张英, 覃武林, 孙伟, 等. 石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J]. 中国有色金属学报, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028

    CrossRef Google Scholar

    ZHANG Y, QIN W L, SUN W, et al. Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028

    CrossRef Google Scholar

    [9] 薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006

    CrossRef Google Scholar

    XUE C, WEI Z C. Action mechanism and research progress of sphalerite inhibitors[J]. Conservation and Utilization of Mineral Resources, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006

    CrossRef Google Scholar

    [10] 朱玉霜, 朱建光. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.

    Google Scholar

    ZHU Y S, ZHU J G. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996.

    Google Scholar

    [11] 胡岳华, 冯其明. 矿产资源加工技术与设备[M]. 北京: 科学出版社, 2006.

    Google Scholar

    HU Y H, FENG Q M. Mineral resources processing technology and equipment [M]. Beijing: Science Press, 2006.

    Google Scholar

    [12] 胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014.

    Google Scholar

    HU Y H. Mineral flotation [M]. Changsha: Central South University Press, 2014.

    Google Scholar

    [13] 徐晓军, 胡熙庚, 刘金华. 辉锑矿的活化与浮选特性[J]. 有色金属(选矿部分), 1995(6): 1−4.

    Google Scholar

    XU X J, HU X G, LIU J H. Activation and flotation characteristics of stibnite[J]. Nonferrous Metals (Mineral Processing), 1995(6): 1−4.

    Google Scholar

    [14] 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987.

    Google Scholar

    HU X G. Beneficiation of non-ferrous sulfide ore [M]. Beijing: Metallurgical Industry Press, 1987.

    Google Scholar

    [15] 朱一民, 周菁. 金属阳离子活化雌黄的浮选及机理[J]. 有色矿山, 2001(1): 28−31+36.

    Google Scholar

    ZHU Y M, ZHOU J. Flotation and mechanism of metal cationic activation[J]. Nonferrous Mines, 2001(1): 28−31+36.

    Google Scholar

    [16] FU Y L, WANG. S S. Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors: US4657688[P]. 1987−04−14.

    Google Scholar

    [17] ACKERMAN P K, HARRIS G H, KLIMPEL R R, et al. Use of xanthogen formates as collectors in the flotation of copper sulfides and pyrite[J]. International Journal of Mineral Processing, 2000, 58: 1−13. doi: 10.1016/S0301-7516(99)00068-X

    CrossRef Google Scholar

    [18] 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594.

    Google Scholar

    CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon group structure on flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1589−1594.

    Google Scholar

    [19] 卢绿荣, 陈建华, 李玉琼. 硫化矿浮选捕收剂分子结构与性能的电子态密度研究[J]. 中国有色金属学报, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22

    CrossRef Google Scholar

    LU L R, CHEN J H, LI Y Q. Electronic states density study of molecular structures and activity of sulfide flotation collectors[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22

    CrossRef Google Scholar

    [20] BULATOVIC S M. Handbook of flotation reagents [M]. Amsterdam: Elsevier, 2007: 235−293.

    Google Scholar

    [21] YANG X, BORIS A, LIU G, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(5)

Article Metrics

Article views(883) PDF downloads(358) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint