| Citation: | WANG Jizhen, JING Maochen, LIU Ruihua, HAN Shuo. Theoretical Analysis of Flotation Reagent Performance[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2023.08.002 |
The influence of flotation regulators (such as lime, sodium sulfide, sodium cyanide and metal ion activator) on mineral flotation and the relationship between collector structure and performance were studied. The results showed that solubility product criterion and frontier orbital energy level parameters could be used to analyze the properties or structure-activity relationship of flotation reagents, but should be paid attention to the study of mineral surface properties, non-valence bond factors of flotation reagent properties and mineral-reagent interaction mechanism. By examining mineral surface features, it has been determined that selective depression or activation of minerals by flotation regulator (such as sodium sulfide, sodium cyanide, copper and lead metal ions) had a certain relationship with the valence electron configuration of mineral lattice metal, which was consistent with or supplementary to the results of solubility product criterion analysis. The interaction mechanism between minerals and reagents was examined using the solubility product criterion and frontier orbital energy level parameters were used to study the relationship between hydrocarbon group structure and xanthate properties. As a result, the primary and secondary relationships of hydrophobic factors, valence bond factors and spatial geometric effects of xanthate’s alkyl group structure on collecting performance were obtained. In conclusion, it is difficult to fully explain the performance of flotation reagents with a single theoretical parameter. The establishment of the coupled theoretical analysis system for reagent performance should be one of the key focuses of future research.
| [1] | 王淀佐. 浮选剂作用原理与应用[M]. 北京: 冶金工业出版社, 1983. WANG D Z. Principles and applications of flotation reagents[M]. Beijing: Metallurgical Industry Press, 1983. |
| [2] | 林强, 王淀佐. 浮选药剂的活性—选择性原理[J]. 有色金属, 1990(4): 32−37. LIN Q, WANG D Z. Principle of reactivity and selectivity of flotation reagent[J]. Nonferrous Metals, 1990(4): 32−37. |
| [3] | PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110. |
| [4] | LIU G, LIU J, HUANG Y, et al. New advances in the understanding and development of flotation collectors: A Chinese experience[J]. Minerals Engineering, 2018, 118: 78−86. doi: 10.1016/j.mineng.2018.01.009 |
| [5] | 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106. CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106. |
| [6] | LIU G Y, YANG X L, ZHONG H. Molecular design of flotation collectors: a recent progress[J]. Adv Colloid Interfac, 2017, 246: 181−195. doi: 10.1016/j.cis.2017.05.008 |
| [7] | 孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037 SUN W, HU Y H, QIU G Z, et al. Kinetic simulation of ion adsorption on sphalerite (110) Surface[J]. The Chinese Journal of Nonferrous Metals, 2002(1): 187−190. doi: 10.3321/j.issn:1004-0609.2002.01.037 |
| [8] | 张英, 覃武林, 孙伟, 等. 石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J]. 中国有色金属学报, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028 ZHANG Y, QIN W L, SUN W, et al. Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 675−679. doi: 10.19476/j.ysxb.1004.0609.2011.03.028 |
| [9] | 薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006 XUE C, WEI Z C. Action mechanism and research progress of sphalerite inhibitors[J]. Conservation and Utilization of Mineral Resources, 2017(3): 38−43. doi: 10.3969/j.issn.1000-6532.2017.03.006 |
| [10] | 朱玉霜, 朱建光. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996. ZHU Y S, ZHU J G. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996. |
| [11] | 胡岳华, 冯其明. 矿产资源加工技术与设备[M]. 北京: 科学出版社, 2006. HU Y H, FENG Q M. Mineral resources processing technology and equipment [M]. Beijing: Science Press, 2006. |
| [12] | 胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014. HU Y H. Mineral flotation [M]. Changsha: Central South University Press, 2014. |
| [13] | 徐晓军, 胡熙庚, 刘金华. 辉锑矿的活化与浮选特性[J]. 有色金属(选矿部分), 1995(6): 1−4. XU X J, HU X G, LIU J H. Activation and flotation characteristics of stibnite[J]. Nonferrous Metals (Mineral Processing), 1995(6): 1−4. |
| [14] | 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987. HU X G. Beneficiation of non-ferrous sulfide ore [M]. Beijing: Metallurgical Industry Press, 1987. |
| [15] | 朱一民, 周菁. 金属阳离子活化雌黄的浮选及机理[J]. 有色矿山, 2001(1): 28−31+36. ZHU Y M, ZHOU J. Flotation and mechanism of metal cationic activation[J]. Nonferrous Mines, 2001(1): 28−31+36. |
| [16] | FU Y L, WANG. S S. Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors: US4657688[P]. 1987−04−14. |
| [17] | ACKERMAN P K, HARRIS G H, KLIMPEL R R, et al. Use of xanthogen formates as collectors in the flotation of copper sulfides and pyrite[J]. International Journal of Mineral Processing, 2000, 58: 1−13. doi: 10.1016/S0301-7516(99)00068-X |
| [18] | 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594. CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon group structure on flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1589−1594. |
| [19] | 卢绿荣, 陈建华, 李玉琼. 硫化矿浮选捕收剂分子结构与性能的电子态密度研究[J]. 中国有色金属学报, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22 LU L R, CHEN J H, LI Y Q. Electronic states density study of molecular structures and activity of sulfide flotation collectors[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1482−1490. doi: 10.19476/j.ysxb.1004.0609.2018.07.22 |
| [20] | BULATOVIC S M. Handbook of flotation reagents [M]. Amsterdam: Elsevier, 2007: 235−293. |
| [21] | YANG X, BORIS A, LIU G, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032 |
Solubility product of metal site on sulfide ore surface with xanthate and hydroxide ion
Frontier molecular orbital energy level of xanthate and solubility product of metal-xanthate