Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

LIU Wengang, DING Shengyuan, ZHAO Liang, ZHENG Yongxing, LIU Wenbao. Application Progress for Performance Criteria of Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 17-21. doi: 10.13779/j.cnki.issn1001-0076.2023.03.002
Citation: LIU Wengang, DING Shengyuan, ZHAO Liang, ZHENG Yongxing, LIU Wenbao. Application Progress for Performance Criteria of Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 17-21. doi: 10.13779/j.cnki.issn1001-0076.2023.03.002

Application Progress for Performance Criteria of Flotation Reagents

  • With the development of the theory and method of chemical properties research, the relationship between the structure and properties of flotation reagents has gradually changed from qualitative analysis to quantitative research. The key of quantitative research is to determine some principles or criteria that can judge the separation performance of reagents in advance, that is, the performance criteria of flotation reagents. This paper briefly introduces the common design criteria of flotation agents and their advantages and disadvantages, in order to provide a basis for the research and development of high−efficiency flotation agents. The design criteria can be divided into chemical property criterion, group or bonded atom property criterion and binding energy criterion. These criteria pay more attention to the interaction process between the reagent and the mineral surface, which leads to its screening function in the process of use. In order to develop novel and efficient flotation agents, it is necessary to rely on the characterization theory and method of the strength of the flotation reagents and minerals, select the property parameters of flotation reagents and establish the correlation between the property parameters and the strength of the action, so as to form a novel and more efficient performance criterion of flotation reagents.

  • 加载中
  • [1] 王淀佐, 邱冠周, 胡岳华. 资源加工学[M]. 北京: 科学出版社, 2005.

    Google Scholar

    WANG D Z , QIU G Z, HU Y H. Science of resource processing[M]. BeiJing: Science Press, 2005.

    Google Scholar

    [2] ГЛЕМБОЦКИЙ А В, 韩树山. 已知性质的浮选药剂的寻找与《设计》[J]. 国外金属矿选矿, 1973(10): 42−44.

    Google Scholar

    ГЛЕМБОЦКИЙ А B, HAN S S. Search and design of flotation reagents with known properties[J]. Beneficiation of metal ore abroad, 1973(10): 42−44.

    Google Scholar

    [3] 王淀佐. 选矿与冶金药剂分子设计[M]. 长沙: 中南工业大学出版社, 1996.

    Google Scholar

    WANG D Z. Molecular Design of reagent in Mineral Processing and Metallurgy [M]. Changsha: Central South University of Technology Press, 1996.

    Google Scholar

    [4] 朱玉霜. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.

    Google Scholar

    ZHU Y S. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996.

    Google Scholar

    [5] 陈建华, 冯其明, 卢毅屏. 浮选药剂亲固基团的设计[J]. 有色金属, 1999, 51(2): 19−23.

    Google Scholar

    CHEN J H, FENG Q M, LU Y P. Design of solidophilic groups of flotation reagents[J]. Nonferrous Metals, 1999, 51(2): 19−23.

    Google Scholar

    [6] 朱建光, 伍喜庆. 同分异构原理在合成氧化矿捕收剂中的应用[J]. 有色金属, 1990, 42(3): 32−38.

    Google Scholar

    ZHU J G, WU X Q. Application of isomerism principle in the synthesis of oxide ore collector[J]. Nonferrous Metals, 1990, 42(3): 32−38.

    Google Scholar

    [7] LIU R Q, SUN W, HU Y H, et al. New collectors for the flotation of unactivated marmatite[J]. Minerals Engineering, 2010, 23(2): 99−103. doi: 10.1016/j.mineng.2009.10.010

    CrossRef Google Scholar

    [8] 张行荣, 刘龙利, 吴桂叶, 等. 浮选药剂分子结构设计原理概述[J]. 矿冶, 2013, 22(3): 25−29. doi: 10.3969/j.issn.1005-7854.2013.03.006

    CrossRef Google Scholar

    ZHANG X R, LIU L L, WU G Y et al. Overview of molecular structure design principle of flotation reagents[J]. Mining and Metallurgy, 2013, 22(3): 25−29. doi: 10.3969/j.issn.1005-7854.2013.03.006

    CrossRef Google Scholar

    [9] 王福良, 孙传尧. 利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为[J]. 国外金属矿选矿, 2008(6): 25−27.

    Google Scholar

    WANG F L, SUN C Y. Analysis of Flotation behavior of unactivated white lead ore by Xanthate collector using molecular mechanics[J]. Foreign metal ore processing, 2008(6): 25−27.

    Google Scholar

    [10] HUANG Z Q, ZHONG H, WANG S, et al. Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate minerals[J]. Minerals Engineering, 2014, 56: 145−154. doi: 10.1016/j.mineng.2013.11.006

    CrossRef Google Scholar

    [11] PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110.

    Google Scholar

    [12] 吴桂叶, 张杰, 李松清, 等. 一种氟碳铈矿捕收剂的设计筛选及浮选性能研究[J]. 中国矿业, 2014, 23(2): 273−275.

    Google Scholar

    WU G Y, ZHANG J, LI S Q, et al. Research on design, screening and flotation performance of a cerium fluocarbon collector[J]. China Mining Industry, 2014, 23(2): 273−275.

    Google Scholar

    [13] MARABINI A M, CIRIACHI M, PLESCIA M, et al. Chelating reagents for flotation[J]. Minerals Engineering, 2007, 20(10): 1014−1025. doi: 10.1016/j.mineng.2007.03.012

    CrossRef Google Scholar

    [14] 任霞, 王珏, 孙会敏, 等. 表面活性剂临界胶束浓度测定方法的建立和比较[J]. 中国药事, 2019, 34(8): 916−924. doi: 10.16153/j.1002-7777.2020.08.010

    CrossRef Google Scholar

    REN X, WANG J, SUN H M, et al. Establishment and comparison of methods for determination of critical micelle concentration of surfactants[J]. Chinese Journal of Pharmaceutical Sciences, 2019, 34(8): 916−924. doi: 10.16153/j.1002-7777.2020.08.010

    CrossRef Google Scholar

    [15] 王淀佐. 浮选药剂的结构与性能—一百种含硫有机浮选剂的分子设计[J]. 有色金属(选矿部分), 1979(2): 12−26.

    Google Scholar

    WANG D Z. Structure and properties of flotation reagents−Molecular design of one hundred sulfur−containing organic flotation agents[J]. Nonferrous Metals (Mineral Processing Section), 1979(2): 12−26.

    Google Scholar

    [16] 高山, 麻军法. 精制蛋黄卵磷脂亲水−亲油平衡值测定及其在鸦胆子油乳注射液中的应用[J]. 中国药业, 2011, 20(20): 21−23. doi: 10.3969/j.issn.1006-4931.2011.20.012

    CrossRef Google Scholar

    GAO S, MA J. Determination of hydrophilic and lipophilic balance value of lecithin from refined egg yolk and its application in Brucea javanica oil Emulsion injection[J]. China Pharmaceutical Industry, 2011, 20(20): 21−23. doi: 10.3969/j.issn.1006-4931.2011.20.012

    CrossRef Google Scholar

    [17] 李敏. 电负性标度及其应用[D]. 大连: 大连理工大学, 2012.

    Google Scholar

    LI M. Electronegativity scale and its application [D]. Dalian: Dalian University of Technology, 2012.

    Google Scholar

    [18] 冯成建, 张建树. 用电负性原理定量计算捕收剂非极性基长度的意义及应用[J]. 矿产综合利用, 2003(4): 15−19. doi: 10.3969/j.issn.1000-6532.2003.04.004

    CrossRef Google Scholar

    FENG C J, ZHANG J S. Significance and application of quantitative calculation of non−polar base length of collector based on electronegativity principle[J]. Comprehensive Utilization of Mineral Resources, 2003(4): 15−19. doi: 10.3969/j.issn.1000-6532.2003.04.004

    CrossRef Google Scholar

    [19] 刘文刚. 新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究[D]. 沈阳, 东北大学, 2010.

    Google Scholar

    LIU W G. Synthesis and flotation performance of a new type of hematite desilication collector [D]. Shenyang, Northeast University, 2010.

    Google Scholar

    [20] 王淀佐. 浮选剂作用原理及应用[D]. 北京: 冶金工业出版社, 1982.

    Google Scholar

    WANG D Z. Principle and Application of flotation agent [D]. Beijing: Metallurgical Industry Press, 1982.

    Google Scholar

    [21] LIU G Y, ZHONG H, DAI T G. Investigation of the effect of N−substituents on performance of thionocarbamates as selective collectors for copper suldes by abinitio calculations[J]. Minerals Engineering, 2008, 21: 1050−1054. doi: 10.1016/j.mineng.2008.04.017

    CrossRef Google Scholar

    [22] 曹飞. 基于密度泛函理论的硫氨酯捕收剂的设计合成及机理研究[D]. 北京科技大学, 2016.

    Google Scholar

    CAO F. Design, synthesis and mechanism study of thiamine ester collector based on density functional theory [D]. University of Science and Technology Beijing, 2016.

    Google Scholar

    [23] 钟宏, 张湘予, 马鑫, 等. 酰氨基黄药的制备及其对黄铜矿、黄铁矿的浮选性能研究[J]. 矿产保护与利用, 2021, 41(2): 10.

    Google Scholar

    ZHONG H, ZHANG X Y, MA X, et al. Study on preparation of acyl−amino xanthate and its flotation performance to chalcopyrite and pyrite [J]. Mineral Protection and Utilization, 201, 41 (2) : 10.

    Google Scholar

    [24] YANG X L, ALBIJANIC B, LIU G Y, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032

    CrossRef Google Scholar

    [25] 张丹, 晁聪, 李玉坤, 等. 定量构效关系应用于水中有机污染物降解过程的研究进展[J]. 化工环保, 2021, 41(4): 418−426.

    Google Scholar

    ZHANG D, CHAO C, LI Y K, et al. Research progress of quantitative structure−activity relationship applied to the degradation process of organic pollutants in water [J]. Chemical Environmental Protection, 201, 41 (4) : 418−426.

    Google Scholar

    [26] HANSCH C, MALONEY P P, FUJITA T, et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients[J]. Nature, 1962, 194: 178−180.

    Google Scholar

    [27] 王淀佐. 浮选剂的结构与性能(Ⅰ)[J]. 中南矿冶学院学报, 1980(4): 7−15.

    Google Scholar

    WANG D Z. Structure and Properties of flotation agent (Ⅰ)[J]. Journal of Central South Institute of Mining and Metallurgy, 1980(4): 7−15.

    Google Scholar

    [28] YANG X L, ALBIJANIC B, ZHOU Y, et al. Using 3D−QSAR to predict the separation efficiencies of flotation collectors: Implications for rational design of non−polar side chains[J]. Minerals Engineering, 2018, 129: 112−119. doi: 10.1016/j.mineng.2018.09.026

    CrossRef Google Scholar

    [29] HU Y H, CHEN P, SUN W. Study on quantitative structure−activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation[J]. Minerals Engineering, 2012, 26: 24−33. doi: 10.1016/j.mineng.2011.10.007

    CrossRef Google Scholar

    [30] 谭鑫. 钨锡矿物螯合捕收剂靶向性分子设计及其作用机理研究[D]. 东北大学, 2017.

    Google Scholar

    TAN X. Study on molecular design and mechanism of targeting of Tungsten−tin mineral chelating collector [D]. Northeastern University, 2017.

    Google Scholar

    [31] 陈硕, 李非凡, 孙国辉, 等. QSAR 建模及其在抗病毒药物设计与筛选中的研究进展[J]. 化学试剂, 2021, 43(7): 895−905.

    Google Scholar

    CHEN S, LI F F, SUN G H, et al. Research progress of QSAR modeling and its application in antiviral drug design and screening [J]. Chemical Reagents, 21, 43 (7) : 895−905.

    Google Scholar

    [32] RATH S S, SAHOO H, DAS B, et al. Density functional calculations of amines on the (101) face of quartz[J]. Minerals Engineering, 2014, 69: 57−64. doi: 10.1016/j.mineng.2014.07.007

    CrossRef Google Scholar

    [33] REN L Y, QIU H, ZHANG Y M, et al. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal[J]. Powder Technology, 2018, 338: 180−189. doi: 10.1016/j.powtec.2018.07.026

    CrossRef Google Scholar

    [34] 薛正扬. 石墨烯量子点在生物医学中应用的分子动力学研究[D]. 杭州: 浙江大学, 2019.

    Google Scholar

    XUE Z Y. Molecular dynamics of graphene quantum dots applied in biomedicine [D]. Hangzhou: Zhejiang University, 2019.

    Google Scholar

    [35] 郝海青, 李丽匣, 张晨, 等. 经典分子动力学模拟在矿物浮选研究中的应用[J]. 矿产保护与利用, 2018(3): 9−16. doi: 10.13779/j.cnki.issn1001-0076.2018.03.002

    CrossRef Google Scholar

    HAO H Q, LI L X, ZHANG C et al. Application of classical molecular dynamics simulation in mineral flotation[J]. Mineral Conservation and Utilization, 2018(3): 9−16. doi: 10.13779/j.cnki.issn1001-0076.2018.03.002

    CrossRef Google Scholar

    [36] 郭丽娜, 李志红, 朱张磊, 等. 阳离子捕收剂对高岭石的捕收性能及动力学模拟[J]. 中国矿业, 2017, 26(5): 112−116+121. doi: 10.3969/j.issn.1004-4051.2017.05.021

    CrossRef Google Scholar

    GUO L N, LI Z H, ZHU Z L et al. Performance and kinetics simulation of cationic collector for kaolinite[J]. China Mining Industry, 2017, 26(5): 112−116+121. doi: 10.3969/j.issn.1004-4051.2017.05.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(706) PDF downloads(997) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint